Overview oo	Theoretical Motivation	Experimental Background	CASPEr 0000000	Summary 000

WIDG Journal Club Cosmic Axion Spin Precession Experiment

B. Brubaker A. Malagon

Yale University

11/18/2013

Overview ●○	Theoretical Motivation	Experimental Background	CASPE r 0000000	Summary 000
Ovorvio	\A/			

Cosmic Axion Spin Precession Experiment (CASPEr)

Dmitry Budker,^{1,2} Peter W. Graham,³ Micah Ledbetter,⁴ Surjeet Rajendran,³ and Alex Sushkov⁵

¹Department of Physics, University of California, Berkeley, California 94720, USA

²Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA

³Stanford Institute for Theoretical Physics, Department of Physics, Stanford University, Stanford, CA 94305

⁴AOSense, 767 N. Mary Ave, Sunnyvale, CA, 94085-2909

⁵Department of Physics, and Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA.

We propose an experiment to search for QCD axion and axion-like-particle (ALP) dark matter. Nuclei that are interacting with the background axion dark matter acquire time-varying CP-odd nuclear moments such as an electric dipole moment. In analogy with nuclear magnetic resonance, these moments cause precession of nuclear spins in a material sample in the presence of a background electric field. This precession can be detected through high-precision magnetometry. With current techniques, this experiment has sensitivity to axion masses $m_a \lesssim 10^{-9}$ eV, corresponding to theoretically well-motivated axion decay constants $f_a \gtrsim 10^{16}$ GeV. With improved magnetometry, this experiment could ultimately cover the entire range of masses $m_a \lesssim \mu eV$, just beyond the region accessible to current axion searches.

Overview ○●	Theoretical Motivation	Experimental Background	CASPEr 0000000	Summary 000
Overviev	V			

• Axions: hypothetical particles that might

Overview ○●	Theoretical Motivation	Experimental Background	CASPEr 0000000	Summary 000
Overview	/			

- Axions: hypothetical particles that might
 - Solve the strong CP problem

Overview ○●	Theoretical Motivation	Experimental Background	CASPEr 0000000	Summary 000
Overviev	V			

- Axions: hypothetical particles that might
 - Solve the strong CP problem
 - Constitute all or part of the dark matter

Overview ○●	Theoretical Motivation	Experimental Background	CASPE r 0000000	Summary 000
Overvie	W			

- Axions: hypothetical particles that might
 - Solve the strong CP problem
 - Constitute all or part of the dark matter
- Overview of parameter space and current detection strategies: often unfavorable scaling with small coupling constants

Overview ○●	Theoretical Motivation	Experimental Background	CASPE r 0000000	Summary 000
Overvie	9W			

- Axions: hypothetical particles that might
 - Solve the strong CP problem
 - Constitute all or part of the dark matter
- Overview of parameter space and current detection strategies: often unfavorable scaling with small coupling constants
- One measurable effect: dark matter axion field induces oscillating EDMs in nucleons

Overview ○●	Theoretical Motivation	Experimental Background	CASPE r 0000000	Summary 000
Overvie	W			

- Axions: hypothetical particles that might
 - Solve the strong CP problem
 - Constitute all or part of the dark matter
- Overview of parameter space and current detection strategies: often unfavorable scaling with small coupling constants
- One measurable effect: dark matter axion field induces oscillating EDMs in nucleons
- CASPEr plans to search for this effect using NMR techniques.

Overview	Theoretical Motivation	Experimental Background	CASPEr	Summary
oo	●○○○○○○		0000000	000
-				

The Strong CP Problem

Overview	Theoretical Motivation	Experimental Background	CASPEr	Summary
oo	●○○○○○○		0000000	000
The Stro	ong CP Probler	m		

• *CP* Violation (equivalent to *T* Violation by CPT Theorem): A question of fundamental importance in particle physics and cosmology

Overview	Theoretical Motivation	Experimental Background	CASPEr	Summary
00	●○○○○○○		0000000	000
The St	rong CP Proble	m		

- *CP* Violation (equivalent to *T* Violation by CPT Theorem): A question of fundamental importance in particle physics and cosmology
- *T*-symmetry violation parametrized by a phase: e.g., V → Ve^{iθ} in Schroedinger equation.

Overview	Theoretical Motivation	Experimental Background	CASPE r	Summary
oo	●○○○○○○		0000000	000
The St	rong CP Proble	m		

- *CP* Violation (equivalent to *T* Violation by CPT Theorem): A question of fundamental importance in particle physics and cosmology
- *T*-symmetry violation parametrized by a phase: e.g., $V \rightarrow Ve^{i\theta}$ in Schroedinger equation.
- QCD Lagrangian contains *CP*-violating term $\mathcal{L}_{\theta} \propto \theta G \widetilde{G}$
- θ = sum of free parameters from strong and electroweak sectors: theory suggests $\theta \sim O(1)$, but experiments constrain $\theta < 10^{-10}$ \Rightarrow *The Strong CP Problem*

Over	vie	ew
00		

Experimental Background

CASPEr

Summary

Symmetry Violation and EDMs

	0000000	000000	0000000	000
Cumm	atry Vialation a			

Symmetry Violation and EDMs

 By Wigner-Eckart Theorem, expectation values of vector operators must point along spin quantization direction

•				
Overview	Theoretical Motivation	Experimental Background	CASPEr 0000000	Summary

Symmetry Violation and EDMs

- By Wigner-Eckart Theorem, expectation values of vector operators must point along spin quantization direction
- Magnetic and Electric Dipole Moments transform oppositely under *P* and *T* reversal

Overview 00	Theoretical Motivation	Experimental Background	CASPEr 0000000	Summary 000

Symmetry Violation and EDMs

- By Wigner-Eckart Theorem, expectation values of vector operators must point along spin quantization direction
- Magnetic and Electric Dipole Moments transform oppositely under *P* and *T* reversal
- *CP* violation in QCD \Rightarrow neutron EDM. Non-observation constrains $\theta < 10^{-10}$ rad

 Overview
 Theoretical Motivation
 Experimental Background
 CASPEr
 Summary

 00
 000000
 000000
 000000
 000
 000

Solving the Strong CP Problem: Axions

Overview oo	Theoretical Motivation ○○●○○○○○	Experimental Background	CASPEr 0000000	Summ 000
Solving t	he Strong <i>CP</i> I	Problem: Axions		

• Introduce complex pseudoscalar field A with U(1) symmetry in $a = \arg[A]$: coupling to QCD yields $\theta = \frac{a}{f_a}$

Overview 00	Theoretical Motivation	Experimental Background	CASPEr 0000000	Summa 000
Solving	g the Strong <i>CI</i>	Problem: Axior	าร	
 Intro a = 	pduce complex pset arg[A]: coupling to	udoscalar field A with QCD yields $\theta = \frac{a}{f_2}$	U(1) symmet	ry in

• Spontaneous symmetry breaking at energy scale *f_a* produces "Mexican hat" potential

Overview 00	Theoretical Motivation	Experimental Background	CASPEr 0000000	Summa 000
Solving	g the Strong <i>CI</i>	P Problem: Axior	าร	
 Intro a = 	oduce complex pset arg[A]: coupling to	udoscalar field A with QCD yields $\theta = \frac{a}{f_0}$	U(1) symmet	ry in

- Spontaneous symmetry breaking at energy scale *f_a* produces "Mexican hat" potential
- QCD instanton effects tilt potential: $\theta \rightarrow 0$ dynamically. Zero-point fluctuations w/ mass $m_a \sim \Lambda_{\rm QCD}^2 / f_a \Leftrightarrow axions$

Overview oo	Theoretical Motivation	Experimental Background	CASPEr 0000000	Summary 000
Axion D	Dark Matter			

$$\mathcal{L} = \frac{1}{2} \left(\partial^{\mu} a \right)^{2} - \frac{1}{2} m_{a}^{2} a^{2} + C \frac{a}{f_{a}} G \widetilde{G} + C' \frac{a}{f_{a}} F \widetilde{F} + \cdots$$

• Couplings scale as $g \propto f_a^{-1} \propto m_a$

• \Rightarrow Low-mass axions ($m_a < 1 \text{ meV}$) could be dark matter!

Overview oo	Theoretical Motivation	Experimental Background	CASPEr 0000000	Summary 000
Propertie	s of Axion Darl	< Matter		

$$\mathcal{L} = \frac{1}{2} \left(\partial^{\mu} a \right)^{2} - \frac{1}{2} m_{a}^{2} a^{2} + C \frac{a}{f_{a}} G \widetilde{G} + C' \frac{a}{f_{a}} F \widetilde{F} + \cdots$$

Overview oo	Theoretical Motivation	Experimental Background	CASPE r 0000000	Summary 000
Propertie	s of Axion Darl	< Matter		

$$\mathcal{L} = \frac{1}{2} \left(\partial^{\mu} a \right)^{2} - \frac{1}{2} m_{a}^{2} a^{2} + C \frac{a}{f_{a}} G \widetilde{G} + C' \frac{a}{f_{a}} F \widetilde{F} + \cdots$$

• Small mass \Rightarrow large # density: field looks classical

Overview oo	Theoretical Motivation	Experimental Background	CASPEr 0000000	Summary 000
Propertie	s of Axion Darl	< Matter		

$$\mathcal{L} = \frac{1}{2} \left(\partial^{\mu} a \right)^{2} - \frac{1}{2} m_{a}^{2} a^{2} + C \frac{a}{f_{a}} G \widetilde{G} + C' \frac{a}{f_{a}} F \widetilde{F} + \cdots$$

- Small mass \Rightarrow large # density: field looks classical
- Axions have virial velocity $v \sim 10^{-3}$
 - Coherence length $\lambda_a \sim \frac{1}{m_a v} > 1 \text{ m} \Rightarrow$ spatially uniform on laboratory scales
 - Coherence time $\tau_a \sim \frac{\lambda_a}{v} > 4\mu s \Rightarrow$ light axions coherent for longer

Overview oo	Theoretical Motivation	Experimental Background	CASPEr 0000000	Summary 000
Propertie	s of Axion Darl	< Matter		

$$\mathcal{L} = \frac{1}{2} \left(\partial^{\mu} a \right)^{2} - \frac{1}{2} m_{a}^{2} a^{2} + C \frac{a}{f_{a}} G \widetilde{G} + C' \frac{a}{f_{a}} F \widetilde{F} + \cdots$$

- Small mass \Rightarrow large # density: field looks classical
- Axions have virial velocity $v \sim 10^{-3}$
 - Coherence length $\lambda_a \sim \frac{1}{m_a v} > 1 \text{ m} \Rightarrow$ spatially uniform on laboratory scales
 - Coherence time $\tau_a \sim \frac{\lambda_a}{v} > 4\mu s \Rightarrow$ light axions coherent for longer
- Solving E-L equations without couplings: $a = a_0 \cos(m_a t)$ with $\rho_{\text{DM}} = \frac{1}{2}m_a^2 a_0^2$

Overview oo	Theoretical Motivation	Experimental Background	CASPEr 0000000	Summary 000
Axion-Ph	oton Coupling			

$$\mathcal{L} \subset rac{1}{4} g_{a\gamma\gamma} a F \widetilde{F} = g_{a\gamma\gamma} a \mathbf{E} \cdot \mathbf{B}$$

[e.g., ADMX-HF (Lamoreaux) and YMCE (Baker) at Yale]

Overview oo	Theoretical Motivation	Experimental Background	CASPEr 0000000	Summary 000
Axion-Ph	oton Coupling			

$$\mathcal{L} \subset rac{1}{4} g_{a\gamma\gamma} a F \widetilde{F} = g_{a\gamma\gamma} a \mathbf{E} \cdot \mathbf{B}$$

[e.g., ADMX-HF (Lamoreaux) and YMCE (Baker) at Yale]

A scattering experiment: virtual photons from
 B field as target

Overview	Theoretical Motivation	Experimental Background	CASPE r	Summary
00	○○○○●○○		0000000	000
Axion-F	Photon Couplin	q		

$$\mathcal{L} \subset rac{1}{4} g_{a\gamma\gamma} a F \widetilde{F} = g_{a\gamma\gamma} a \mathbf{E} \cdot \mathbf{B}$$

[e.g., ADMX-HF (Lamoreaux) and YMCE (Baker) at Yale]

- A scattering experiment: virtual photons from
 B field as target
- Resonantly enhanced in cavity of size $L \approx \lambda_{\gamma} = m_a^{-1}$

Overview 00	Theoretical Motivation	Experimental Background	CASPEr 0000000	Summary 000
Axion-F	Photon Couplin	a		

$$\mathcal{L} \subset rac{1}{4} g_{a\gamma\gamma} a F \widetilde{F} = g_{a\gamma\gamma} a \mathbf{E} \cdot \mathbf{B}$$

[e.g., ADMX-HF (Lamoreaux) and YMCE (Baker) at Yale]

- A scattering experiment: virtual photons from
 B field as target
- Resonantly enhanced in cavity of size $L \approx \lambda_{\gamma} = m_a^{-1}$
- Conversion power P ~ g²_{aγγ} ⇐ unfavorable scaling, even worse without an axion source!

Ove	rv	ie	W
00			

Experimental Background

CASPEr

Summary

Axion Parameter Space

• Model band is in yellow: note $g \propto m$

Ove	rvi	e٧	
00			

Experimental Background

CASPEr

Summary

- Model band is in yellow: note $g \propto m$
- Astro bounds: $m_a \sim 1 \text{ meV}$, $f_a \sim 10^9 \text{ GeV}$, $\omega_a/2\pi \sim 250 \text{ GHz}$

Ove	rvi	e٧	
00			

Experimental Background

CASPEr

Summary

- Model band is in yellow: note $g \propto m$
- Astro bounds: $m_a \sim 1$ meV, $f_a \sim 10^9$ GeV, $\omega_a/2\pi \sim 250$ GHz
- Overclosure bound (?): $m_a \sim 1 \ \mu \text{eV}, f_a \sim 10^{12} \text{ GeV},$ $\omega_a/2\pi \sim 250 \text{ MHz}$

Ove	rvi	e٧	
00			

Experimental Background

CASPEr

Summary

- Model band is in yellow: note g ∝ m
- Astro bounds: $m_a \sim 1 \text{ meV}$, $f_a \sim 10^9 \text{ GeV}$, $\omega_a/2\pi \sim 250 \text{ GHz}$
- Overclosure bound (?): $m_a \sim 1 \ \mu \text{eV}, f_a \sim 10^{12} \text{ GeV},$ $\omega_a/2\pi \sim 250 \text{ MHz}$
- GUT scale: $m_a \sim 10^{-10}$ eV, $f_a \sim 10^{16}$ GeV, $\omega_a/2\pi \sim 25$ kHz

Ove	rvi	e٧	
00			

Experimental Background

CASPEr

Summary

- Model band is in yellow: note g ∝ m
- Astro bounds: $m_a \sim 1 \text{ meV}$, $f_a \sim 10^9 \text{ GeV}$, $\omega_a/2\pi \sim 250 \text{ GHz}$
- Overclosure bound (?): $m_a \sim 1 \ \mu \text{eV}, f_a \sim 10^{12} \text{ GeV},$ $\omega_a/2\pi \sim 250 \text{ MHz}$
- GUT scale: $m_a \sim 10^{-10}$ eV, $f_a \sim 10^{16}$ GeV, $\omega_a/2\pi \sim 25$ kHz
- Planck scale: $m_a \sim 10^{-13}$ eV, $f_a \sim 10^{19}$ GeV, $\omega_a/2\pi \sim 25$ Hz

Ove	rvi	ie	Ν
00			

Experimental Background

CASPEr

Summary

- Model band is in yellow: note $g \propto m$
- Astro bounds: $m_a \sim 1$ meV, $f_a \sim 10^9$ GeV, $\omega_a/2\pi \sim 250$ GHz
- Overclosure bound (?): $m_a \sim 1 \ \mu \text{eV}, f_a \sim 10^{12} \text{ GeV},$ $\omega_a/2\pi \sim 250 \text{ MHz}$
- GUT scale: $m_a \sim 10^{-10}$ eV, $f_a \sim 10^{16}$ GeV, $\omega_a/2\pi \sim 25$ kHz
- Planck scale: $m_a \sim 10^{-13}$ eV, $f_a \sim 10^{19}$ GeV, $\omega_a/2\pi \sim 25$ Hz
- ALPs: No relation between mass and coupling

Overview oo	Theoretical Motivation	Experimental Background	CASPE r 0000000	Summary 000
Axion-Inc	luced Nucleon	EDMs		

• A new idea:
$$d_n \propto \theta \Rightarrow d_n = g_d a_0 \cos(m_a t)$$

 $\left(g_d = A_{\text{QCD}} f_a^{-1}\right)$
Overview oo	Theoretical Motivation	Experimental Background	CASPEr 0000000	Summary 000
Axion-Ind	uced Nucleon	EDMs		

• A new idea:
$$d_n \propto \theta \Rightarrow d_n = g_d a_0 \cos(m_a t)$$

 $\left(g_d = A_{\text{QCD}} f_a^{-1}\right)$

• If axions constitute all dark matter

$$d_n = A_{ ext{QCD}} \sqrt{2
ho_{DM}} \cos{(m_a t)} \sim 10^{-34} \, e \cdot ext{cm}$$

Overview oo	Theoretical Motivation	Experimental Background	CASPEr 0000000	Summary 000
Axion-Ind	luced Nucleon	EDMs		

• A new idea:
$$d_n \propto \theta \Rightarrow d_n = g_d a_0 \cos(m_a t)$$

 $\left(g_d = A_{\text{QCD}} f_a^{-1}\right)$

If axions constitute all dark matter

$$d_n = A_{ ext{QCD}} \sqrt{2
ho_{DM}} \cos{(m_a t)} \sim 10^{-34} \, e \cdot ext{cm}$$

• Parameter-free magnitude for induced AC EDM!

Overview oo	Theoretical Motivation	Experimental Background	CASPEr 0000000	Summary 000
Axion-Ind	luced Nucleon	EDMs		

• A new idea:
$$d_n \propto \theta \Rightarrow d_n = g_d a_0 \cos(m_a t)$$

 $\left(g_d = A_{\text{QCD}} f_a^{-1}\right)$

If axions constitute all dark matter

$$d_n = A_{ ext{QCD}} \sqrt{2
ho_{DM}} \cos{(m_a t)} \sim 10^{-34} \, e \cdot ext{cm}$$

- Parameter-free magnitude for induced AC EDM!
- Observable effect linear in g_d!

Overview 00	Theoretical Motivation	Experimental Background	CASPEr 0000000	Summary 000
Static E	DM Searches			

• Prepare spins \perp to applied *B*, *E* fields: in time *t* they precess through angle $\propto \Delta U = \mu B \pm dE$

Overview oo	Theoretical Motivation	Experimental Background	CASPEr 0000000	Summary 000
Static F	DM Searches			

- Prepare spins \perp to applied *B*, *E* fields: in time *t* they precess through angle $\propto \Delta U = \mu B \pm dE$
- Switch *E* field and subtract measurements $\Rightarrow \Delta U_d = 2dE$

Overview oo	Theoretical Motivation	Experimental Background	CASPEr 0000000	Summary 000
Static F)M Searches			

- Prepare spins \perp to applied *B*, *E* fields: in time *t* they precess through angle $\propto \Delta U = \mu B \pm dE$
- Switch *E* field and subtract measurements $\Rightarrow \Delta U_d = 2dE$
- Major systematic: B field fluctuations look like additional energy splitting

Overview 00	Theoretical Motivation	Experimental Background	CASPEr 0000000	Summary 000
Static F	DM Searches			

- Prepare spins \perp to applied *B*, *E* fields: in time *t* they precess through angle $\propto \Delta U = \mu B \pm dE$
- Switch *E* field and subtract measurements $\Rightarrow \Delta U_d = 2dE$
- Major systematic: B field fluctuations look like additional energy splitting
- $t \sim 1 \text{ ms} \Rightarrow \text{AC EDM signal averages out.}$

Overview oo	Theoretical Motivation	Experimental Background	CASPEr 0000000	Summary 000
A Measurable Effect?				

• Axion-induced effect: $10^{-34} e \cdot cm$

Overview oo	Theoretical Motivation	Experimental Background	CASPEr 0000000	Summary 000
A Measurable Effect?				

- Axion-induced effect: $10^{-34} e \cdot cm$
- Best current limit for static neutron EDM: $10^{-26} e \cdot cm$.

- Axion-induced effect: $10^{-34} e \cdot cm$
- Best current limit for static neutron EDM: $10^{-26} e \cdot cm$. But some reasons for hope:
 - Only need to precisely control high-frequency Fourier components of applied field

- Axion-induced effect: $10^{-34} e \cdot cm$
- Best current limit for static neutron EDM: $10^{-26} e \cdot cm$. But some reasons for hope:
 - Only need to precisely control high-frequency Fourier components of applied field
 - Resonant Detection is possible \Rightarrow NMR

Overview	Theoretical Motivation	Experimental Background	CASPEr	Summary
		00000		

Zeeman splittings in magnetic field B₀ 2^ˆ

Overview	Theoretical Motivation	Experimental Background	CASPEr	Summary
		00000		

- Zeeman splittings in magnetic field $B_0 \hat{z}$
 - Larmor frequency $\omega_L = \gamma B_0 \approx 450 \text{ MHz}$

Overview	Theoretical Motivation	Experimental Background	CASPEr	Summary
		00000		

- Zeeman splittings in magnetic field B₀ 2^ˆ
 - Larmor frequency $\omega_L = \gamma B_0 \approx 450 \text{ MHz}$
 - At 4 K, for ²⁰⁷Pb in 10 T field: $N_{+1/2}/N_{-1/2} = 1 + 5 \times 10^{-3}$

Overview	Theoretical Motivation	Experimental Background	CASPEr	Summary
		00000		

- Zeeman splittings in magnetic field B₀ 2²
 - Larmor frequency $\omega_L = \gamma B_0 \approx 450 \text{ MHz}$
 - At 4 K, for ²⁰⁷Pb in 10 T field: $N_{+1/2}/N_{-1/2} = 1 + 5 \times 10^{-3}$
- AC Transverse field at Larmor Frequency: $H_1 = \gamma B_{\perp} \cos(\omega_L t)$ stimulates transitions

Brubaker, Malagon (Yale)

WIDG Journal Club: CASPEr

Overview 00	Theoretical Motivation	Experimental Background	CASPEr 0000000	Summary 000

NMR Basics – Classical Picture

		000000		
00	0000000	000000	0000000	000
Overview	Theoretical Motivation	Experimental Background	CASPEr	Summary

NMR Basics – Classical Picture

 In classical picture, spins initially precess around B₀ at Larmor frequency

		- D'stan		
Overview oo	Theoretical Motivation	Experimental Background	CASPEr 0000000	Summary

- In classical picture, spins initially precess around B₀ at Larmor frequency
- When B_{\perp} applied at Larmor frequency, they precess around B_{\perp} instead.

Overview oo	Theoretical Motivation	Experimental Background	CASPEr 0000000	Summary 000
Pulsed N	MR			

- In most experiments, B_{\perp} is strong, and pulsed to rotate spins into x-y plane \Rightarrow " $\pi/2$ pulse"
- Use coil to detect transverse magnetization over time T_2 .

Overview oo	Theoretical Motivation	Experimental Background	CASPEr 0000000	Summary 000
Two Time	escales			

Overview oo	Theoretical Motivation	Experimental Background	CASPEr 0000000	Summary 000
Two Time	escales			

• Due to microscopic field inhomogeneity

Overview oo	Theoretical Motivation	Experimental Background	CASPEr 0000000	Summary 000
Two Time	escales			

- Due to microscopic field inhomogeneity
- Resonant response has a finite width $\sim T_2^{-1}$

Overview 00	Theoretical Motivation	Experimental Background	CASPEr 0000000	Summary 000
Two Ti	mescales			

- Due to microscopic field inhomogeneity
- Resonant response has a finite width $\sim T_2^{-1}$
- ~1 ms, longer is better. Dynamic decoupling [Barrett] can yield $\sim \mathcal{O}(s)$

Overview 00	Theoretical Motivation	Experimental Background	CASPEr 0000000	Summary 000
Two Ti	maecalae			

- Due to microscopic field inhomogeneity
- Resonant response has a finite width $\sim T_2^{-1}$
- ~1 ms, longer is better. Dynamic decoupling [Barrett] can yield $\sim \mathcal{O}(s)$
- T₁: Longitudinal Relaxation Time

Overview 00	Theoretical Motivation	Experimental Background	CASPEr 0000000	Summary 000
Two Ti	moccaloc			

- Due to microscopic field inhomogeneity
- Resonant response has a finite width $\sim T_2^{-1}$
- ~1 ms, longer is better. Dynamic decoupling [Barrett] can yield $\sim \mathcal{O}(s)$
- T₁: Longitudinal Relaxation Time
 - Induced transitions equalize population of spins in each sublevel \Rightarrow Saturation

Overview 00	Theoretical Motivation	Experimental Background	CASPE r 0000000	Summary 000
Two Ti	mescales			

- Due to microscopic field inhomogeneity
- Resonant response has a finite width $\sim T_2^{-1}$
- ~1 ms, longer is better. Dynamic decoupling [Barrett] can yield $\sim \mathcal{O}(s)$
- T₁: Longitudinal Relaxation Time
 - Induced transitions equalize population of spins in each sublevel \Rightarrow Saturation
 - *T*₁: time for populations to re-equilibrate

Overview 00	Theoretical Motivation	Experimental Background	CASPE r 0000000	Summary 000
Two Ti	mescales			

- Due to microscopic field inhomogeneity
- Resonant response has a finite width $\sim T_2^{-1}$
- ~1 ms, longer is better. Dynamic decoupling [Barrett] can yield $\sim \mathcal{O}(s)$

• T₁: Longitudinal Relaxation Time

- Induced transitions equalize population of spins in each sublevel \Rightarrow Saturation
- T_1 : time for populations to re-equilibrate
- Due to coupling to environment

Overview 00	Theoretical Motivation	Experimental Background	CASPEr 0000000	Summary 000
Two Ti	magaalaa			

Two Timescales

• T₂: Transverse Relaxation Time

- Due to microscopic field inhomogeneity
- Resonant response has a finite width $\sim T_2^{-1}$
- ~1 ms, longer is better. Dynamic decoupling [Barrett] can yield $\sim \mathcal{O}(s)$

• T₁: Longitudinal Relaxation Time

- Induced transitions equalize population of spins in each sublevel \Rightarrow Saturation
- *T*₁: time for populations to re-equilibrate
- Due to coupling to environment
- Hours at $T \sim$ 4 K: shorter is better for pulsed NMR

Overview oo	Theoretical Motivation	Experimental Background	CASPEr ●○○○○○○	Summary 000
NMR for	an Oscillating I	EDM Search		

• $H_1 = d_n E_{\perp}$ plays role of $H_1 = \gamma B_{\perp}$

Overview oo	Theoretical Motivation	Experimental Background	CASPEr ●○○○○○○	Summary 000
NMR for	an Oscillating I	EDM Search		

- $H_1 = d_n E_{\perp}$ plays role of $H_1 = \gamma B_{\perp}$
- $H_1 \sim \cos(m_a t)$: frequency set by fundamental physics!

Overview oo	Theoretical Motivation	Experimental Background	CASPEr ●○○○○○○	Summary 000
NMR fo	or an Oscillatin			

- $H_1 = d_n E_\perp$ plays role of $H_1 = \gamma B_\perp$
- $H_1 \sim \cos(m_a t)$: frequency set by fundamental physics!
- Can tune Larmor frequency by changing B₀ to get resonance

	00000000		000000	000
Overview	Theoretical Motivation	Experimental Background	CASPEr	Summary

NMR for an Oscillating EDM Search

- $H_1 = d_n E_{\perp}$ plays role of $H_1 = \gamma B_{\perp}$
- $H_1 \sim \cos{(m_a t)}$: frequency set by fundamental physics!
- Can tune Larmor frequency by changing B₀ to get resonance
- Even with large E, H₁ is perturbative: transverse magnetization builds up continuously, limited by min(T₂, τ_a)

Overview oo	Theoretical Motivation	Experimental Background	CASPEr ●○○○○○○	Summary 000
NMR for	an Oscillating E	EDM Search		

- $H_1 = d_n E_{\perp}$ plays role of $H_1 = \gamma B_{\perp}$
- $H_1 \sim \cos{(m_a t)}$: frequency set by fundamental physics!
- Can tune Larmor frequency by changing *B*₀ to get resonance
- Even with large E, H₁ is perturbative: transverse magnetization builds up continuously, limited by min(T₂, τ_a)
- Perturbative $H_1 \Rightarrow$ no saturation even for long T_1 , so longer T_1 is better: allows use of higher-than-thermal polarizations!

Overview oo	Theoretical Motivation	Experimental Background	CASPEr ○●○○○○○	Summary 000
CASPEr:	Experimental	Setup		

- Apply B_0 and E_{\perp} fields to a non-paramagnetic insulator.
- Measure transverse magnetization with sensitive magnetometer (SQUID or SERF).
- Incrementally adjust B_0 to scan axion mass range.

Overview oo	Theoretical Motivation	Experimental Background	CASPEr ○○●○○○○	Summary 000
The CAS	PEr Signal			

$$\begin{split} M_{x}(t) &= np\gamma H_{1} \frac{\sin\left[\left(\omega_{L} - m_{a}\right)t\right]}{\left(\omega_{L} - m_{a}\right)} \sin\left(\omega_{L}t\right) e^{-t/T_{2}} \\ &\rightarrow np\gamma H_{1}t \sin\left(\omega_{L}t\right) e^{-t/T_{2}} \text{ for } \omega_{L} \rightarrow m_{a}, \ T_{2} < \tau_{a} \end{split}$$

Overview oo	Theoretical Motivation	Experimental Background	CASPEr ○○●○○○○	Summary 000
The CAS	PEr Signal			

$$\begin{split} M_{x}(t) &= np\gamma H_{1} \frac{\sin\left[\left(\omega_{L} - m_{a}\right)t\right]}{\left(\omega_{L} - m_{a}\right)} \sin\left(\omega_{L}t\right) e^{-t/T_{2}} \\ &\rightarrow np\gamma H_{1}t \sin\left(\omega_{L}t\right) e^{-t/T_{2}} \text{ for } \omega_{L} \rightarrow m_{a}, \ T_{2} < \tau_{a} \end{split}$$

•
$$e^{-t/T_2}$$
 due to transverse relaxation
Overview 00	Theoretical Motivation	Experimental Background	CASPEr ○○●○○○○	Summary 000
The C/	ASPEr Signal			

$$M_{x}(t) = np\gamma H_{1} \frac{\sin \left[\left(\omega_{L} - m_{a} \right) t \right]}{\left(\omega_{L} - m_{a} \right)} \sin \left(\omega_{L} t \right) e^{-t/T_{2}}$$

 $\rightarrow np\gamma H_{1} t \sin \left(\omega_{L} t \right) e^{-t/T_{2}} \text{ for } \omega_{L} \rightarrow m_{a}, \ T_{2} < \tau_{a}$

• e^{-t/T_2} due to transverse relaxation

 \mathbf{z}

• $\sin(\omega_L t)$ due to rotation of signal in xy plane

Overview 00	Theoretical Motivation	Experimental Background	CASPEr ○○●○○○○	Summary 000
The C/	ASPEr Signal			

$$M_{x}(t) = np\gamma H_{1} \frac{\sin \left[\left(\omega_{L} - m_{a} \right) t \right]}{\left(\omega_{L} - m_{a} \right)} \sin \left(\omega_{L} t \right) e^{-t/T_{2}}$$

$$\rightarrow np\gamma H_{1} t \sin \left(\omega_{L} t \right) e^{-t/T_{2}} \text{ for } \omega_{L} \rightarrow m_{a}, \ T_{2} < \tau_{a}$$

•
$$e^{-t/T_2}$$
 due to transverse relaxation

ື

- $\sin(\omega_L t)$ due to rotation of signal in xy plane
- $H_1 \frac{\sin[(\omega_L m_a)t]}{(\omega_L m_a)}$ like a matrix element in perturbation theory: sinc function $\rightarrow \delta$ function as $t \rightarrow \infty$

Overview 00	Theoretical Motivation	Experimental Background	CASPEr ○○●○○○○	Summary 000
The C/	ASPEr Signal			

$$M_{x}(t) = np\gamma H_{1} \frac{\sin \left[\left(\omega_{L} - m_{a} \right) t \right]}{\left(\omega_{L} - m_{a} \right)} \sin \left(\omega_{L} t \right) e^{-t/T_{2}}$$

 $\rightarrow np\gamma H_{1} t \sin \left(\omega_{L} t \right) e^{-t/T_{2}} \text{ for } \omega_{L} \rightarrow m_{a}, \ T_{2} < \tau_{a}$

•
$$e^{-t/T_2}$$
 due to transverse relaxation

 \sim

- $\sin(\omega_L t)$ due to rotation of signal in xy plane
- $H_1 \frac{\sin[(\omega_L m_a)t]}{(\omega_L m_a)}$ like a matrix element in perturbation theory: sinc function $\rightarrow \delta$ function as $t \rightarrow \infty$
- $np\gamma$: Initial magnetization along \hat{z}

Overview oo	Theoretical Motivation	Experimental Background	CASPEr ○○○●○○○	Summary 000
CASPEr:	Relevant Para	imeters I		

$$M_x(t) = np\gamma H_1 t \sin(\omega_L t) e^{-t/T_2}$$
 for $\omega_L \to m_a, T_2 < \tau_a$

Overview oo	Theoretical Motivation	Experimental Background	CASPEr ○○○●○○○	Summary 000
CASPEr:	Relevant Para	imeters I		

$$M_x(t) = np\gamma H_1 t \sin(\omega_L t) e^{-t/T_2}$$
 for $\omega_L \to m_a, T_2 < \tau_a$

• $H_1 = d_n E^* \epsilon_s$

Overview oo	Theoretical Motivation	Experimental Background	CASPEr ○○○●○○○	Summary 000
CASPEr:	Relevant Para	imeters I		

$$M_x(t) = np\gamma H_1 t \sin(\omega_L t) e^{-t/T_2}$$
 for $\omega_L \to m_a, T_2 < \tau_a$

- $H_1 = d_n E^* \epsilon_s$
 - Internal fields much stronger than those available in lab: e.g. $E^* \approx 3 \times 10^8$ V/cm for ferroelectric PbTiO₃

Overview oo	Theoretical Motivation	Experimental Background	CASPEr ○○o●○○○	Summary 000
CASPEr:	Relevant Para	imeters I		

$$M_x(t) = np\gamma H_1 t \sin(\omega_L t) e^{-t/T_2}$$
 for $\omega_L \to m_a, T_2 < \tau_a$

- $H_1 = d_n E^* \epsilon_s$
 - Internal fields much stronger than those available in lab: e.g. $E^* \approx 3 \times 10^8$ V/cm for ferroelectric PbTiO₃
 - ϵ_s : Schiff factor: dipole interaction shielded by charges in atom. $\epsilon_s \propto Z^3 \Rightarrow$ for high-Z nucleus like Pb, $\epsilon_s \approx 10^{-2}$

Overview oo	Theoretical Motivation	Experimental Background	CASPEr ○○o●○○○	Summary 000
CASPEr	Relevant Para	imeters I		

$$M_x(t) = np\gamma H_1 t \sin(\omega_L t) e^{-t/T_2}$$
 for $\omega_L \to m_a, T_2 < \tau_a$

- $H_1 = d_n E^* \epsilon_s$
 - Internal fields much stronger than those available in lab: e.g. $E^* \approx 3 \times 10^8$ V/cm for ferroelectric PbTiO₃
 - ϵ_s : Schiff factor: dipole interaction shielded by charges in atom. $\epsilon_s \propto Z^3 \Rightarrow$ for high-Z nucleus like Pb, $\epsilon_s \approx 10^{-2}$
- $n = \text{spin} \# \text{density} \sim 10^{22} \text{ cm}^{-3}; \gamma \approx 0.6 \mu_N$ for Pb.

Overview oo	Theoretical Motivation	Experimental Background	CASPEr ○○○●○○○	Summary 000
CASPEr:	Relevant Para	imeters I		

$$M_x(t) = np\gamma H_1 t \sin(\omega_L t) e^{-t/T_2}$$
 for $\omega_L \to m_a, T_2 < \tau_a$

- $H_1 = d_n E^* \epsilon_s$
 - Internal fields much stronger than those available in lab: e.g. $E^* \approx 3 \times 10^8$ V/cm for ferroelectric PbTiO₃
 - ϵ_s : Schiff factor: dipole interaction shielded by charges in atom. $\epsilon_s \propto Z^3 \Rightarrow$ for high-Z nucleus like Pb, $\epsilon_s \approx 10^{-2}$
- $n = \text{spin} \# \text{density} \sim 10^{22} \text{ cm}^{-3}; \gamma \approx 0.6 \mu_N$ for Pb.
- *p*: polarization fraction: can be increased from ~ 10⁻³ to O(1) by optical pumping since T₁ is long

Overview oo	Theoretical Motivation	Experimental Background	CASPEr ○○○○●○○	Summary 000
CASPEr	Relevant Para	meters II		

$$M_x(t) = np\gamma H_1 t \sin(\omega_L t) e^{-t/T_2}$$
 for $\omega_L \to m_a, T_2 < \tau_a$

Recall T₂: 1 ms to ~ 1 s with dynamic decoupling

Overview oo	Theoretical Motivation	Experimental Background	CASPEr ○○○○●○○	Summary 000
CASPEr:	Relevant Para	imeters II		

$$M_x(t) = np\gamma H_1 t \sin(\omega_L t) e^{-t/T_2}$$
 for $\omega_L \to m_a, T_2 < \tau_a$

- Recall T₂: 1 ms to ~ 1 s with dynamic decoupling
- τ_a : 1 ms to $\sim 10^4$ s depending on axion mass

Overview oo	Theoretical Motivation	Experimental Background	CASPEr ○○○○●○○	Summary 000
CASPEr:	Relevant Para	meters II		

$$M_x(t) = np\gamma H_1 t \sin(\omega_L t) e^{-t/T_2}$$
 for $\omega_L \to m_a, T_2 < \tau_a$

- Recall T₂: 1 ms to ~ 1 s with dynamic decoupling
- τ_a : 1 ms to ~ 10⁴ s depending on axion mass
- For now, assume τ_a ≫ T₂: always true without dynamic decoupling, true except for highest masses regardless

Overview oo	Theoretical Motivation	Experimental Background	CASPEr ○○○○●○○	Summary 000
CASPEr:	Relevant Para	meters II		

$$M_x(t) = np\gamma H_1 t \sin(\omega_L t) e^{-t/T_2}$$
 for $\omega_L \to m_a, T_2 < \tau_a$

- Recall T₂: 1 ms to ~ 1 s with dynamic decoupling
- τ_a : 1 ms to ~ 10⁴ s depending on axion mass
- For now, assume τ_a ≫ T₂: always true without dynamic decoupling, true except for highest masses regardless

Overview oo	Theoretical Motivation	Experimental Background	CASPEr ○○○○○●○	Summary 000

• Want to step γB_0 by $\sim T_2^{-1}$, take data for some time *t*, repeat.

Brubaker, Malagon (Yale)

WIDG Journal Club: CASPEr

Overview oo	Theoretical Motivation	Experimental Background	CASPEr ○○○○○●○	Summary 000

- Want to step γB_0 by $\sim T_2^{-1}$, take data for some time *t*, repeat.
- Fix a scan rate, e.g., O(1) range of frequencies per year: determines integration time *t*.

Overview oo	Theoretical Motivation	Experimental Background	CASPEr ○○○○○●○	Summary 000

- Want to step γB_0 by $\sim T_2^{-1}$, take data for some time *t*, repeat.
- Fix a scan rate, e.g., O(1) range of frequencies per year: determines integration time *t*.
- Magnetometer noise: $\frac{10^{-16}}{\sqrt{2t}}$ T/ \sqrt{Hz} : determines SNR $\propto t^{3/2}$

Overview 00	Theoretical Motivation	Experimental Background	CASPEr ○○○○○●○	Summary 000

- Want to step γB_0 by $\sim T_2^{-1}$, take data for some time *t*, repeat.
- Fix a scan rate, e.g., O(1) range of frequencies per year: determines integration time t.
- Magnetometer noise: $\frac{10^{-16}}{\sqrt{2t}}$ T/ \sqrt{Hz} : determines SNR $\propto t^{3/2}$
- Accessible parameter space: anywhere below 10 T \Leftrightarrow 450 MHz \sim 1 μeV

Overview oo	Theoretical Motivation	Experimental Background	CASPEr ○○○○○○●	Summary 000
Proposed	d Limits			

Overview oo	Theoretical Motivation	Experimental Background	CASPEr 0000000	Summary ●00
Summar	у			

- A new idea to look for axions: look for the axion-induced EDM.
- The induced EDM is small, but could be detected using NMR techniques and sensitive magnetometers.
- Observable effect scales linearly with g_d
- Challenges
 - Precisely controlling transverse field fluctuations?
 - Lots of parameter space to cover
- Questions?

Overview 00	Theoretical Motivation	Experimental Background	CASPEr 0000000	Summary 000		
Figures from						

- N. Fortson, P. Sandars, and S. Barr, Physics Today 56(6), 33 (2003).
- A. S. Chou, U. of M. Cosmology Seminar, 2011.
- A. Melissinos, *Experiments in Modern Physics* (Academic Press, 2003).
- G. Raffelt, U. W. Axion Physics Workshop, 2012.
- G. Carosi, U. W. Axion Physics Workshop, 2012.
- A. Ringwald, Exploring the role of axions and other WISPs in the dark universe, *Physics of the Dark Universe*, 2012. Vol. 1.
- ACME Collaboration, Order of Magnitude Smaller Limit on the Electric Dipole Moment of the Electron, arXiv prepritn, 2013.
- http://en.wikipedia.org/wiki/Nuclear_magnetic_ resonance

Overview 00	Theoretical Motivation	Experimental Background	CASPEr 0000000	Summary 000
SNR Sc	aling			

Overview oo	Theoretical Motivation	Experimental Background	CASPEr 0000000	Summary ○○●
SNR Sca	aling			

• For time $t < T_2$, signal increases linearly, so $SNR \propto t^{3/2}$

Overview oo	Theoretical Motivation	Experimental Background	CASPEr 0000000	Summary ○○●
SNR Sca	aling			

- For time $t < T_2$, signal increases linearly, so $SNR \propto t^{3/2}$
- For t > T₂, t < τ_a, M ~ dEte^{-t/T₂}, SNR increases more slowly as signal decays

Overview oo	Theoretical Motivation	Experimental Background	CASPEr 0000000	Summary oo●
SNR Sc	aling			

- For time $t < T_2$, signal increases linearly, so $SNR \propto t^{3/2}$
- For t > T₂, t < τ_a, M ~ dEte^{-t/T₂}, SNR increases more slowly as signal decays
- For $t > \tau_a$, SNR increases by $t^{1/4}$

Overview 00	Theoretical Motivation	Experimental Background	CASPEr 0000000	Summary 000
SNR Scaling				

- For time $t < T_2$, signal increases linearly, so $SNR \propto t^{3/2}$
- For t > T₂, t < τ_a, M ~ dEte^{-t/T₂}, SNR increases more slowly as signal decays
- For $t > \tau_a$, SNR increases by $t^{1/4}$
- Can understand this as incoherently adding all the bumps in quadrature