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Abstract: The Fermilab Holometer

Main Points

I Hypothesis: [Xi ,Xj ] = ı̇`′PεijkXk

I 〈x2
⊥〉 = L`′P

I We are building interferometers to search

for macroscopic effects

I http://holometer.fnal.gov especially scientific bibliography

I Craig Hogan’s papers on arXiv re quantum geometry
and interferometers
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Context: Vacuum Vessels for Interferometers
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Context: Vacuum Vessels for End Mirror
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Context: The Neighborhood
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Historical Context: Michelson-Gale-Pearson Sagnac effect

2010 x 1113 ft rectangular interferometer in Clearing, IL (1925)
12-inch steel water pipes, evacuated to 13 Torr. Mirrors adjusted
by mechanical feedthroughs, coordinated via telephone.
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Motivation: Natural Units

Max Planck: from three physical
constants, c , ~,G , derive:

Length: `P =
√

~G
c3 = 1.6× 10−35m

Time: tP =
√

~G
c5 = 5.4× 10−44s

Mass: mP =
√

~c
G = 2.2× 10−8kg
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Motivation: Size and Energy
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Motivation: Theoretical Developments

Thermodynamics

I SBH = 4π(R/2`P)2

I Formulations of GR from thermodynamics

Holographic Principle

I “Nature’s book keeping system: the data can be written onto
a surface, and the pen with which the data are written has a
finite size.” - Gerard ’t Hooft

I Verlinde1 calculates the number of states in a sphere:
NG (R) = 4π(R/`P)2.

Treat space-time as a statistical behavior of a quantum system.
States have new forms of spatially nonlocal entanglement.

1JHEP 1104, 029 (2011)
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Motivation: Geometry

Paradox

I Classical geometry is based on the primitive notion of spatial
points; locality is presumed

I Quantum Physics does not ascribe events to definite points

I How does geometry work for quantum measurements?

Standard Architecture of Physics

I Dynamic space-time responds to particles and fields (lensing;
pulsar spin-down) but is not quantum

I Quantum particles and fields defined on the “stage” of
classical geometry

I This accommodation explains all quantum mechanics
(particle) experiments

It cannot be the whole story
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Hypothesis: a new commutator

[xµ, xν] = ı̇xκUλεµνκλ`
′
P

I x are Hermitian operators on bodies

I eigenvalues of x are locations of bodies

I U is 4-velocity: ∂x/c∂t

I εµνκλ is antisymmetric 4-Tensor

I the form is covariant

I describes quantum relationship between two
timelike trajectories
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Hypothesis: Macroscopic Uncertainty

[xi , xj ] = ı̇xkεijk`
′
P

In the Rest Frame

I In the rest frame, turns into Planck scale quantum algebra for
position operators in 3D at one time

I Similar to angular momentum algebra, with x in place of J

I Uncertainty in transverse position after propagating D:
〈x2
⊥〉 = D`′P

I Uncertainty increases with separation D.

I This is a “new” quantum departure from classical geometry

I Purely transverse to propagation direction
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Hypothesis: Transverse Position Uncertainty
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Hypothesis: Normalization

Define the state |d〉 as two bodies separated by distance D = d`′P .

For a given separation D, there are 2d + 1 states.

In a sphere, values d are allowed such that 0 ≤ d ≤ R/`′P . Each
one of these has 2d + 1 states. So the number of states in a
3-sphere of radius R is

N3S =
∑R/`′P

d=0 2d + 1 = d(d + 1)→ (R/`′P)2 for R � `′P

I Recall that Verlinde calculates NG (R) = 4π(R/`P)2

I N3S(R) = NG (R)→ `′P = `P/2
√
π

I The normalized transverse position uncertainty is
〈x2
⊥〉 = D`P/2

√
π
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Experiment: Michelson Interferometer

Measure voltage at
detector as a function of
time.

For a constant number
photons per second at the
input, this measures

∆(t) ≡ D2(t)− D1(t)
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Video demonstration of ∆(t) at audio frequencies.
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Experiment: ∆(t) in an Interferometer

Reference Design for One Interferometer

I Arm Length L = 40 meters

I Optical Wavelength λ = 1.064 microns

I Power on beam splitter PBS = 1 kWatt

I Free Spectral Range fc ≡ c/2L = 3.75 MHz

I Round Trip Time τc ≡ 2L/c = 267 nanoseconds
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Experiment: Control two degrees of freedom

∆ ≡ D2− D1

I End mirrors actuated by three
spring-loaded piezo crystals

I 2 kHz resonant frequency

I 14 micron range

I Drive north and east arms
differentially to control ∆

λlaser

I Power Recycling Mirror (PRM)
reflects photons back towards the
beam splitter; makes IFO an
optical cavity

I Change λlaser to minimize reflection
of input light from the PRMQuantum Geometry and the Fermilab Holometer Yale October 28, 2013 18



Experiment: Parts List

I 2W (continuous) Nd:YAG infrared laser

I Beam splitter substrate: polished flat to lose < 50 ppm to
scattering; Suprasil 3001 (loss < 1 ppm)

I End mirrors: 78m radius; Ion Beam Sputtering (loss < 10
ppm)

I Vacuum System: 304L stainless steel + conflats; free of
Hydrocarbon contamination

I Control System: Digital filtering w/FPGA (NI PXIe-7852R) to
control end mirrors (∆L and alignment)

I Cross Correlation: 4 channels @ 100 MHz (NI PXIe-5122) and
32-core computer
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Experiment: Seismic Noise Supression

Quantum Geometry and the Fermilab Holometer Yale October 28, 2013 20



Experiment: Signal Processing

I Autocorrelation function is R∆∆(τ) ≡ E [∆(t)∆(t + τ)]

I At zero time lag, it is the variance: R∆∆(0) = 〈x2
⊥〉

I Linear extrapolation to zero at tc
I Predict Ξ(f ) from theoretical R∆∆

I Calculate Ξ(f ) from measured ∆(t)

I Inverse Fourier Transform yields measured R∆∆
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Length Spectral Density

I Holographic Signal for f < fc :√
ΞH(f ) = 2L

√
`P/c

√
π = 1.39× 10−20meters/

√
Hz

I Poisson (shot) Noise:√
Ξshot(f ) =

√
hcλ/4π2PBS = 1.64× 10−18 meters/

√
Hz

Signal/Noise is < 1%
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Experiment: Increase Signal; Decrease Noise

Signal increases with L. Large interferometer for gravitational wave
detectors have L ∼ 4 km.

Noise decreases with Power. Even with special glass, loss in beam
splitter deforms glass due to thermal heating at P ∼ 3 kW.

Pushing to this extreme, Signal/Noise ∼ 1.

We asked LIGO very politely if we could borrow (and reconfigure)
an interferometer but they are using it to look for gravitational
waves.
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Back to Hypothesis: Coherence
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Experiment: Holometer Observing Strategy

TI =
(

λ2

P2
BSD

3

)(
1
`2
P

)(
h2c3

8π3

)
∼ minutes.

Note: non-gaussian noise in optics and electronics will (probably)
dominate exposure time.
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Summary of novel ideas

I A new commutator: [Xi ,Xj ] = ı̇Xkεijk`
′
P

I Normalization from The Holographic Principle `′P = `P/2
√
π

I Holographic uncertainty adds noise to measurements of the
location of the beam splitter in a Michelson interferometer

I R∆∆(τ) for Holographic noise in one interferometer falls from
R∆∆(0) = D`P/2

√
π to 0 at τ = τc

I Holographic noise of two co-located interferometers is
correlated and depends on the overlapping spacetime volume.
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Conclusion

We have designed, assembled and are currently commissioning the
Fermilab Holometer. We will be sensitive to the macroscopic
effects of these ideas:

I magnitude of the cross correlation;

I spectral shape of the cross correlation;

I modulation of the cross correlation with the configuration of
the interferometers.
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