Cosmogenic Activation in the DM-ICE Experiment

Walter C. Pettus University of Wisconsin – Madison

> Weak Interactions Discussion Group Yale Physics 21 Oct 2013

Outline

Dark Matter and DM-ICE Cosmogenic Activation in DM-ICE $O(50 - 1000 \text{ keV}_{ee})$ Calibration Pulse Shape Discrimination O(>2500 keV_{ee}) Calibration Noise Discrimination O(<20 keV_{ee}) Calibration

The Dark Side of the Universe

Planck collaboration, arXiv: 1303.5062 (2013)

26.8% of Universe is dark matter

- Cosmic Microwave Background
- Baryon Acoustic Oscillations
- Distance Measurements (H_o)
- Type Ia SupernovaeGravitational Lensing
- Cluster Measurements
- Lyman Alpha Forest
- Large Scale Structure
- Galactic Rotation Curves

WIMP Dark Matter Field Status

10^{-39} Limits: WIMP-nucleon cross section [cm²] ----CDMS-Ge ----CDMS-Ge lowE -CDMS-Si 0^{-40} -EDELWEISS lowE --- XENON100 --- XENON10 lowE 10^{-41} 10^{-42} Signals: CoGeNT CRESST II DAMA/LIBRA CDMS-Si 10^{-43} 15 30 50 6 7 8 9 10 20 40 5 WIMP Mass $[GeV/c^2]$

Best Exclusion Limits

Agnese *et al*. arXiv:1304.4279 (2013)

Nagging Positive Signals

Bernabei *et al*. Int J Mod Phys A (2013)

WIDG, 21 Oct 2013

DM-ICE Concept

Search for annual modulation with NaI(Tl) crystals in the Southern Hemisphere

DAMA/LIBRA 5x5 array ~250 kg

DM-lce (concept) 7 crystal array ~125 kg/module ~250 kg total

WIDG, 21 Oct 2013

DM-ICE17

- 2 detectors
- 8.47 kg each
- 2457 m depth
 - 2200 m.w.e.

Deployed Dec 2010
Stable running since June 2011

DM-ICE17 Energy Spectrum

Cosmic Ray Showers

 Cosmic ray shower components can 'activate' detector components

- Muon capture
 - μ^- + A(Z,N) $\rightarrow \nu_{\mu}$ + A(Z-1,N+1)
- Hadron capture
 - $n + A(Z,N) \rightarrow A(Z,N+1)$
 - $p + A(Z,N) \rightarrow A(Z+1,N)$
- Spallation
- $n + A(Z,N) \rightarrow n + A_1(Z_1,N_1) + A_2(Z_2,N_2)$

Cosmic Ray Scaling

Altitude Dependence:

Altitude (km) 5 3 2 10 150 10000 1000 sr^{-1}] $[m^{-2} s^{-1} s$ 100 2 4 10Vertical flux $e^{+} + e^{-}$ $\pi^{+} + \pi^{-}$ 0.1 0.01 400 600 800 1000 0 200Atmospheric depth $[g \, cm^{-2}]$

Latitude Dependence:

Ziegler. IBM J R&D (1998)

Cosmic ray rates depend on altitude (atmospheric depth) and geographic coordinates (geomagnetic rigidity)

Beringer *et al.* (PDG) Phys Rev D (2012)

DM-ICE Logistics

Before running a dark matter experiment at the South Pole . . .

DM-ICE17 Component Sources Crystals: Boulby, UK Steel: Sandviken, SWE DM-ICE17 Construction Madison, WI, USA Polar Program Waypoints Christchurch, NZ McMurdo Station South Pole Station

South Pole Station

Cosmogenic Activation Hazards

Cosmogenic Isotopes

Activity of cosmogenic isotopes simulated by:

ACTIVIA code for Nal crystals

Literature values for Steel (and Copper)

Crystal		
Isotope	Half-Life	
ЗН	12.3 yr	
²² Na	2.6 yr	
109Cd	461 d	
¹¹³ Sn	115 d	
¹²¹ Te	19.2 d	
¹²¹ <i>m</i> Te	164 d	
^{123<i>m</i>} Te	119 d	
^{125m} Te	57.4 d	
^{127m} Te	106 d	
125	59.4 d	
126	12.9 d	
¹²⁷ Xe	36.3 d	

Steel		
Isotope	Half-Life	
⁷ Be	53.2 d	
⁴⁶ Sc	83.8 d	
⁴⁸ V	16.0 d	
⁵¹ Cr	27.7 d	
⁵² Mn	5.59 d	
⁵⁴ Mn	312 d	
⁵⁶ Co	77 d	
⁵⁶ Ni	70.9 d	
⁵⁸ Co	6.08 d	

WIDG, 21 Oct 2013

Cosmogenic Isotopes

Breakdown of crystal activation by travel stage:

Cosmogenic Simulation Effects

Long-lived cosmogenic isotopes from crystal and pressure vessel are expected to persist into data taking

Crystal	Steel
зH	⁷ Be
²² Na	⁴⁶ Sc
109Cd	4 ⁸ V
¹¹³ Sn	⁵¹ Cr
^{121<i>m</i>} Te	⁵² Mn
^{123<i>m</i>} Te	⁵⁴ Mn
^{125<i>m</i>} Te	⁵⁶ Co
^{127<i>m</i>} Te	⁵⁶ Ni
125	⁵⁸ Co
¹²⁷ Xe	

1st Data Month: Simulated Spectrum

WIDG, 21 Oct 2013

Cosmogenic Signals in July 2011*

* (6.5 months after deployment, first month of data run)

- Nal Crystal
 - Still expect clear peaks from multiple isotopes
- Steel Pressure Vessel
 - ⁵⁴Mn is only significant isotope

¹²⁵l in DM–ICE17 Spectrum

¹²⁵I (t_{1/2} = 59.4 days) is good candidate for search in early data months

¹²⁵ Peak Decay

■ λ = 0.3500 ± 0.0157 month⁻¹

t_{1/2} = 59.41 ± 2.66 days

= (59.4 days)

Deploy activity:
1151 ± 118 cpd/kg

⁵⁴Mn in DM-ICE17 data

Other Nal Experiments

- Both ANAIS and DAMA observe ¹²⁵I peak
- ANAIS also looking into presence of other
 Nal cosmogenics (esp. Te states)

Cosmogenic Mitigation at Pole

Time on surface at South Wisconsin
 Pole can be most damaging Flight: MCM – NPX stage for cosmogenics:

South Pole is topographically flat and station buildings provide minimal overburden

WIDG, 21 Oct 2013

Tunnel Storage

40-50 ft firn overburden
 10 m.w.e.
 30% of surface muon rate

Muon Flux Reduction

Muon spectra comparison of South Pole sites with Christchurch and Madison data

Muon Flux

Location	Elevation (ft)	Relative Intensity*	*Relative to Christchurch –	
South Pole - Surface	9190	2.60	approximately sea level	
South Pole – ICL	9190	1.89		
South Pole – Tunnel	9190	0.795		
Christchurch, NZ	120	1.00		
Madison, WI, USA	880	0.669	South Pole Tunnels	
Christchurch (25 days)				
Wisconsin (6o days)				
Flight: MCM – NPX (3 hrs)				
		Flight: CHC (5 hrs	C – MCM) Flight: MSN – CHC (16 hrs)	
WIDG, 21 Oct 2013	V	Valter C. Pettus, UW	Madison 22	

Towards DM-ICE: Crystal Growing

 Growing crystals with Alpha Spectra Inc. (Grand Junction, CO) for next phase
 4,600 ft above sea level

What cosmogenic products can we measure in these crystals?

MINOS Underground @ FNAL

330 ft overburden

Fermilab Test Setup

Test Crystal in Castle

Castle (closed) with DAQ

WIDG, 21 Oct 2013

Cosmogenic Outlook

- Cosmogenics allow energy calibration in 50 – 1000 keV range
- Testing underway to investigate cosmogenic effect on next-phase DM-ICE

