Microwave Cavity Detectors

ADMX-HF Design

Conclusion

Extra Slides

Particle Physics at the Yoctowatt Scale: The ADMX-HF Experiment

Ben Brubaker

WIDG Seminar November 18, 2014

Ben Brubaker

WIDG Seminar: ADMX-HF

11/18/2014 1 / 42

ADMX-HF Design

Conclusion

Extra Slides

Questions I hope to address

- Why do we think axions exist?
- Why do we think dark matter is made of axions?
- What parameter space is available to axions?
- What are the principles of microwave cavity axion detection?
- How are these principles realized in ADMX-HF at Yale?
- What is the current status of ADMX-HF?
- What does ADMX-HF hope to accomplish?

ADMX-HF Design

Conclusion

Extra Slides

Questions I hope to address

- Why do we think axions exist?
- Why do we think dark matter is made of axions?
- What parameter space is available to axions?
- What are the principles of microwave cavity axion detection?
- How are these principles realized in ADMX-HF at Yale?
- What is the current status of ADMX-HF?
- What does ADMX-HF hope to accomplish?

 Theoretical Motivation
 Microwave Cavity Detectors

 0
 000000
 0000000

ADMX-HF Design

Conclusion

Extra Slides

The Strong CP Problem

- The axion is a pseudoscalar field motivated by the Peccei-Quinn solution to the **strong CP problem**.
- CP Violation: asymmetry between processes involving matter and antimatter.
- Two independent sources of CP Violation in QCD from different sectors of the theory: net effect is captured in a parameter θ.
- Neutron EDM searches constrain $\theta < 10^{-10}$.
- The strong CP problem: why is θ so small?

ADMX-HF Design

Conclusion

Extra Slides

Solving the Strong CP Problem: Axions

• CP-violating term in QCD Lagrangian is

$$\mathcal{L} \subset \theta F^a_{\mu\nu} \widetilde{F}^{a\mu\nu}$$

If θ were a field instead of a parameter, the strong CP problem would solve itself!

• Goal: introduce an **axion** field *a* with QCD coupling of the form

$$\mathcal{L} \subset rac{a}{f_a} F^a_{\mu
u} \widetilde{F}^{a \mu
u}$$

ADMX-HF Design

Conclusion

Extra Slides

Solving the Strong CP Problem: Axions

• CP-violating term in QCD Lagrangian is

$$\mathcal{L} \subset \theta F^a_{\mu\nu} \widetilde{F}^{a\mu\nu}$$

If θ were a field instead of a parameter, the strong CP problem would solve itself!

• Goal: introduce an **axion** field *a* with QCD coupling of the form

$$\mathcal{L} \subset \frac{a}{f_a} F^a_{\mu\nu} \widetilde{F}^{a\mu\nu}$$

- The axion is the Goldstone boson of a new symmetry spontaneously broken at a scale f_a .
- Axion mass and all couplings suppressed by $f_a \Rightarrow m_a \propto g_{a\gamma\gamma}$.

Microwave Cavity Detectors

ADMX-HF Design

Conclusion

Extra Slides

Questions I hope to address

- Why do we think axions exist?
- Why do we think dark matter is made of axions?
- What parameter space is available to axions?
- What are the principles of microwave cavity axion detection?
- How are these principles realized in ADMX-HF at Yale?
- What is the current status of ADMX-HF?
- What does ADMX-HF hope to accomplish?

Microwave Cavity Detectors

ADMX-HF Design

Conclusion

Extra Slides

Axions and Dark Matter

• $m_a \propto g_{a\gamma\gamma}$: sufficiently light axions interact very weakly with standard model fields.

Microwave Cavity Detectors

ADMX-HF Design

Conclusion

Extra Slides

Axions and Dark Matter

- $m_a \propto g_{a\gamma\gamma}$: sufficiently light axions interact very weakly with standard model fields.
- Misalignment produces cold axions in large numbers.

Microwave Cavity Detectors

ADMX-HF Design

Conclusion

Extra Slides

Axions and Dark Matter

- *m_a* ∝ *g_{aγγ}*: sufficiently light axions interact very weakly with standard model fields.
- Misalignment produces cold axions in large numbers.
- Axions can account for cold dark matter!

ADMX-HF Design

Conclusion

Extra Slides

Questions I hope to address

- Why do we think axions exist?
- Why do we think dark matter is made of axions?
- What parameter space is available to axions?
- What are the principles of microwave cavity axion detection?
- How are these principles realized in ADMX-HF at Yale?
- What is the current status of ADMX-HF?
- What does ADMX-HF hope to accomplish?

Microwave Cavity Detectors

ADMX-HF Design

Conclusion

Extra Slides

Axion Parameter Space

*: A. Ringwald, Phys. Dark. Univ. 1, 116 (2012).

Microwave Cavity Detectors

ADMX-HF Design

Conclusion

Extra Slides

Axion Parameter Space

Microwave Cavity Detectors

ADMX-HF Design

Conclusion

Extra Slides

Axion Parameter Space

 SN 1987A axion emission too efficient for m_a ≥ 10 meV.

Microwave Cavity Detectors

ADMX-HF Design

Conclusion

Extra Slides

Axion Parameter Space

- SN 1987A axion emission too efficient for m_a ≥ 10 meV.
- $\Omega_a \propto m_a^{-7/6}$: axion dark matter fraction negligible for $m_a \gtrsim 1$ meV.
- too much dark matter for m_a ≤ 1 μeV.

Microwave Cavity Detectors

ADMX-HF Design

Conclusion

Extra Slides

Axion Parameter Space

 (At least) 3 orders of magnitude to scan.

Microwave Cavity Detectors

ADMX-HF Design

Conclusion

Extra Slides

Axion Parameter Space

- (At least) 3 orders of magnitude to scan.
- Coupling is so small that we must use intrinsically narrow-band resonant detection.

ADMX-HF Design

Conclusion

Extra Slides

Questions I hope to address

- Why do we think axions exist?
- Why do we think dark matter is made of axions?
- What parameter space is available to axions?
- What are the principles of microwave cavity axion detection?
- How are these principles realized in ADMX-HF at Yale?
- What is the current status of ADMX-HF?
- What does ADMX-HF hope to accomplish?

Microwave Cavity Detectors

ADMX-HF Design

Conclusion

Extra Slides

Properties of Axion CDM

- Very light particles \Rightarrow huge number density.
- Virialization: $v \sim 270 \text{ km/s} \rightarrow \beta \sim 10^{-3}$.
- Axion signal "quality factor:" $Q_a = E_{\text{mass}}/E_{\text{kin}} = \beta^{-2} \sim 10^6.$
- De Broglie wavelength: λ_a ~ π/m_aβ ~ 100 m for m_a ~ 10⁻⁵ eV.
- Coherent effects on laboratory scales ⇒ more like a classical field than particles.

Microwave Cavity Detectors

ADMX-HF Design

Conclusion

Extra Slides

Microwave Cavity Axion Searches – Concept

- Sikivie*: search for axions with photon coupling *L* ⊂ g_{aγγ} a E · B.
- The Primakoff Effect: classical field at one leg to compensate for weakness of vertex.
- Kinematics: $m_a = v \sim 250 \text{ MHz} 250 \text{ GHz}$.
- Resonant enhancement by *Q* of cavity.
- Cryogenics and low-noise amplifier to reduce noise.
 - *: P. Sikivie, Phys. Rev. Lett. 51, 1415 (1983).

Microwave Cavity Detectors

ADMX-HF Design

Conclusion

Extra Slides

Microwave Cavity Axion Searches – Signal

 $P \sim g_{a \gamma \gamma}^2 \left(\rho_a / m_a \right) B^2 Q_c V C_{nml}$

Microwave Cavity Detectors

ADMX-HF Design

Conclusion

Extra Slides

Microwave Cavity Axion Searches – Signal

Conversion Power:

 $P \sim g_{a\gamma\gamma}^2 \left(\rho_a / m_a \right) B^2 Q_c V C_{nml}$

(Matrix element)²

Microwave Cavity Detectors

ADMX-HF Design

Conclusion

Extra Slides

Microwave Cavity Axion Searches – Signal

$$P\sim g_{a\gamma\gamma}^2\left(
ho_a/m_a
ight)B^2Q_cVC_{nml}$$

- (Matrix element)²
- Axion number density

Extra Slides

Microwave Cavity Axion Searches – Signal

$${\cal P} \sim g_{a\gamma\gamma}^2 \left(
ho_a / m_a
ight) {B^2 Q_c V C_{nml}}$$

- (Matrix element)²
- Axion number density
- Virtual photon number density

Extra Slides

Microwave Cavity Axion Searches – Signal

$$P\sim g_{a\gamma\gamma}^2\left(
ho_a/m_a
ight)B^2 {old Q_c} V C_{nml}$$

- (Matrix element)²
- Axion number density
- Virtual photon number density
- Resonant enhancement of axion-photon conversion

Extra Slides

Microwave Cavity Axion Searches – Signal

Conversion Power:

$$P \sim g_{a\gamma\gamma}^2 \left(
ho_a / m_a
ight) B^2 Q_c \, V C_{nml}$$

- (Matrix element)²
- Axion number density
- Virtual photon number density
- Resonant enhancement of axion-photon conversion
- Effective volume occupied by cavity mode

 \Rightarrow best for low-order TM modes: $L \sim v^{-1}$

Extra Slides

Microwave Cavity Axion Searches – Signal

$$P\sim g_{a\gamma\gamma}^2\left(
ho_a/m_a
ight)B^2Q_c\,VC_{nml}$$

- (Matrix element)²
- Axion number density
- Virtual photon number density
- Resonant enhancement of axion-photon conversion
- Effective volume occupied by cavity mode
 ⇒ best for low-order TM modes: L ~ v⁻¹
- $P \sim 5 \times 10^{-23}$ W (≈ 1 10 keV WIMP event/year)

Microwave Cavity Detectors 0000000

(

ADMX-HF Design

Conclusion

Extra Slides

Microwave Cavity Axion Searches – Noise

The Radiometer Equation:

$$\mathsf{SNR} = \frac{\mathsf{P}}{\mathsf{k}\mathsf{T}_{\mathcal{S}}}\sqrt{\frac{t}{\Delta v_a}}$$

Microwave Cavity Detectors

ADMX-HF Design

Conclusion

Extra Slides

Microwave Cavity Axion Searches – Noise

The Radiometer Equation:

$$\mathsf{SNR} = \frac{\mathsf{P}}{\mathsf{kT}_{\mathcal{S}}} \sqrt{\frac{t}{\Delta v_a}}$$

 Noise temperature *T_S* ∝ variance of Gaussian noise due to blackbody radiation of cavity.

Microwave Cavity Detectors

ADMX-HF Design

Conclusion

Extra Slides

Microwave Cavity Axion Searches – Noise

The Radiometer Equation:

$$SNR = \frac{P}{kT_S} \sqrt{\frac{t}{\Delta v_a}}$$

 Noise temperature *T_S* ∝ variance of Gaussian noise due to blackbody radiation of cavity.

Microwave Cavity Detectors

ADMX-HF Design

Conclusion

Extra Slides

Microwave Cavity Axion Searches – Noise

The Radiometer Equation:

$$SNR = \frac{P}{kT_S} \sqrt{\frac{t}{\Delta v_a}}$$

 Noise temperature T_S ∝ variance of Gaussian noise due to blackbody radiation of cavity.

• Measurement time: axion signal remains constant, noise decreases as $1/\sqrt{t}$.

Microwave Cavity Detectors

ADMX-HF Design

Conclusion

Extra Slides

Microwave Cavity Axion Searches – Scan Rate

• After each measurement, tune cavity resonance by half-linewidth:

Scan rate:

$$\frac{\mathrm{d}\nu}{\mathrm{d}t} \propto g_{a\gamma\gamma}^4 \frac{m_a^2}{T_S^2} B^4 Q_c V^2$$

Microwave Cavity Detectors

ADMX-HF Design

Conclusion

Extra Slides

ADMX (The Axion Dark Matter eXperiment)

- Collaboration of U. Washington (host), U. Florida, LLNL, UC Berkeley, NRAO, Sheffield U.
- 1996-2009: excluded KSVZ axions with
 1.9 μeV < m_a < 3.6 μeV (460 860 MHz).*

*: S. J. Asztalos et al., Phys. Rev. Lett. 104, 041301 (2010).

Microwave Cavity Detectors

ADMX-HF Design

Conclusion

Extra Slides

ADMX (The Axion Dark Matter eXperiment)

- Collaboration of U. Washington (host), U. Florida, LLNL, UC Berkeley, NRAO, Sheffield U.
- 1996-2009: excluded KSVZ axions with
 1.9 μeV < m_a < 3.6 μeV (460 860 MHz).*
- Current focus is reducing *T_S* to improve scan rate:
 - Liquid Helium → Dilution refrigerator expected in 2015.
 - Will improve $\frac{d\nu}{dt}$ by factor of 400!
 - Enabled by SQUID technology.

*: S. J. Asztalos et al., Phys. Rev. Lett. 104, 041301 (2010).

Ben Brubaker

ADMX-HF Design

Conclusion

Extra Slides

Questions I hope to address

- Why do we think axions exist?
- Why do we think dark matter is made of axions?
- What parameter space is available to axions?
- What are the principles of microwave cavity axion detection?
- How are these principles realized in ADMX-HF at Yale?
- What is the current status of ADMX-HF?
- What does ADMX-HF hope to accomplish?

ADMX-HF Design

Conclusion

Extra Slides

ADMX-HF (High-Frequency)

- Will scan in parallel with ADMX starting around 5 GHz (\sim 20 μ eV).
- Will serve as an R&D testbed for extending the microwave cavity search principle to higher frequencies.
- Microwave cavity experiments get hard at high frequencies, but we can reach the axion model band with current technology.
 - Dilution refrigerator in initial design.
 - Tunable Josephson Parametric Amplifiers (JPAs): ultra-low-noise amplifiers developed ~ 2009.
Microwave Cavity Detectors

ADMX-HF Design

Conclusion

Extra Slides

ADMX-HF Collaboration

• Yale University (host)

Steve Lamoreaux, Yulia Gurevich, Ben Brubaker, Sid Cahn

UC Berkeley

Karl Van Bibber, Tim Shokair, Austin Lo, Maria Simanovskaia, Jaben Root

 Lawrence Livermore National Lab Gianpaolo Carosi

<u>CU Boulder/JILA</u>

Konrad Lehnert, Dan Palken

Microwave Cavity Detectors

ADMX-HF Design

Conclusion

Extra Slides

ADMX-HF Layout

Ben Brubaker

Microwave Cavity Detectors

ADMX-HF Design

Conclusion

Extra Slides

ADMX-HF Layout

• 9 T superconducting solenoid

Microwave Cavity Detectors

ADMX-HF Design

Conclusion

Extra Slides

- 9 T superconducting solenoid
- Dilution Refrigerator: T ~ 100 mK

Microwave Cavity Detectors

ADMX-HF Design

Conclusion

Extra Slides

- 9 T superconducting solenoid
- Dilution Refrigerator: T ~ 100 mK
- Copper cavity with Q_c ~ 20,000, tunable from 3.5 to 5.85 GHz

Microwave Cavity Detectors

ADMX-HF Design

Conclusion

Extra Slides

- 9 T superconducting solenoid
- Dilution Refrigerator: T ~ 100 mK
- Copper cavity with Q_c ~ 20,000, tunable from 3.5 to 5.85 GHz
- JPA: sub-quantum-limited, tunable from 4.4 to 6.4 GHz

Microwave Cavity Detectors

ADMX-HF Design

Conclusion

Extra Slides

- 9 T superconducting solenoid
- Dilution Refrigerator: T ~ 100 mK
- Copper cavity with Q_c ~ 20,000, tunable from 3.5 to 5.85 GHz
- JPA: sub-quantum-limited, tunable from 4.4 to 6.4 GHz
- Whole experiment takes place in a room in WLab West!

Microwave Cavity Detectors

ADMX-HF Design

Conclusion

Extra Slides

- 9 T superconducting solenoid
- Dilution Refrigerator: T ~ 100 mK
- Copper cavity with *Q_c* ~ 20,000, tunable from 3.5 to 5.85 GHz
- JPA: sub-quantum-limited, tunable from 4.4 to 6.4 GHz
- Whole experiment takes place in a room in WLab West!

Microwave Cavity Detectors

ADMX-HF Design

Conclusion

Extra Slides

Cavity and Motion Control

- Q_c ~ 20,000, tunable from 3.5 to 5.85 GHz.
- Tuning via rotation of off-axis Cu rod.
- Cryogenic motion control via stepper motors and kevlar lines – 0.003° precision.
- No heat load from motion control at 100 mK.

Microwave Cavity Detectors

ADMX-HF Design

Conclusion

Extra Slides

Cavity Mode Maps

Microwave Cavity Detectors

ADMX-HF Design

Conclusion

Extra Slides

Cavity Mode Maps

Microwave Cavity Detectors

ADMX-HF Design

Conclusion

Extra Slides

- 9 T superconducting solenoid
- Dilution Refrigerator: T ~ 100 mK
- Copper cavity with Q_c ~ 20,000, tunable from 3.5 to 5.85 GHz
- JPA: sub-quantum-limited, tunable from 4.4 to 6.4 GHz

Microwave Cavity Detectors

ADMX-HF Design

Conclusion

Extra Slides

Quantum Limits on Noise Performance

• Linear detection: measuring amplitude and phase simultaneously $\Rightarrow T_S = h\nu/2$ even at T = 0 K.

Quantum Limits on Noise Performance

- Linear detection: measuring amplitude and phase simultaneously $\Rightarrow T_S = hv/2$ even at T = 0 K.
- Need to amplify signal: all loss to room temperature degrades SNR.
- Noise performance of first amplifier is critical:

Quantum Limits on Noise Performance

- Linear detection: measuring amplitude and phase simultaneously $\Rightarrow T_S = h\nu/2$ even at T = 0 K.
- Need to amplify signal: all loss to room temperature degrades SNR.
- Noise performance of first amplifier is critical:

- The Standard Quantum Limit: A phase-insensitive linear amplifier must add noise ≥ hv/2.*
 - *: C. M. Caves, Phys. Rev. D 26, 1817 (1982).

WIDG Seminar: ADMX-HF

Microwave Cavity Detectors

ADMX-HF Design

Conclusion

Extra Slides

Josephson Parametric Amplifier

- An LC circuit with nonlinear SQUID inductance ⇒ parametric gain.
- Energy transfer from an intense pump tone near resonance to nearby frequencies.
- The JPA gain is phase-sensitive: no standard quantum limit!

Microwave Cavity Detectors

ADMX-HF Design

Conclusion

Extra Slides

Josephson Parametric Amplifier

- An LC circuit with nonlinear SQUID inductance ⇒ parametric gain.
- Energy transfer from an intense pump tone near resonance to nearby frequencies.
- The JPA gain is phase-sensitive: no standard quantum limit!
- Narrow-band, but SQUID inductance also a function of flux ⇒ resonance is tunable, but very good magnetic shielding required.

Microwave Cavity Detectors

ADMX-HF Design

Conclusion

Extra Slides

JPA Tuning

In 5 T field (blue) and no field (red)

Ben Brubaker

WIDG Seminar: ADMX-HF

Theoretical Motivation	Microwave Cavity Detectors	ADMX-HF Design ○○○○○○○○●	Conclusion 000000	Extra Slides
Signal Chain				

Analysis is conceptually simple, requires minimal data processing:

- Cavity signal is mixed down to MHz and digitized for t ~ 25 min.
- Compute power spectrum and look for excess power in each axion-width bin.
- Step resonance by $\Delta v_c/2$ and repeat $O(10^4)$ times.
- *T_S* calibrated in situ using blackbody source at known temperature.

Microwave Cavity Detectors

ADMX-HF Design

Conclusion ●○○○○○ Extra Slides

Questions I hope to address

- Why do we think axions exist?
- Why do we think dark matter is made of axions?
- What parameter space is available to axions?
- What are the principles of microwave cavity axion detection?
- How are these principles realized in ADMX-HF at Yale?
- What is the current status of ADMX-HF?
- What does ADMX-HF hope to accomplish?

Microwave Cavity Detectors

ADMX-HF Design

Conclusion

Extra Slides

Recent Progress – Summer 2014

• 6/23-7/1: cavity delivered to Yale, characterized on teststand and in fridge.

Microwave Cavity Detectors

ADMX-HF Design

Conclusion

Extra Slides

Recent Progress – Summer 2014

• 6/23-7/1: cavity delivered to Yale, characterized on teststand and in fridge.

Microwave Cavity Detectors

ADMX-HF Design

Conclusion

Extra Slides

- 6/23-7/1: cavity delivered to Yale, characterized on teststand and in fridge.
- 7/2-7/15: first full system assembly; first cold comissioning run: tests of JPA operation, field ramping.

Microwave Cavity Detectors

ADMX-HF Design

Conclusion

Extra Slides

- 6/23-7/1: cavity delivered to Yale, characterized on teststand and in fridge.
- 7/2-7/15: first full system assembly; first cold comissioning run: tests of JPA operation, field ramping.

Microwave Cavity Detectors

ADMX-HF Design

Conclusion

Extra Slides

- 6/23-7/1: cavity delivered to Yale, characterized on teststand and in fridge.
- 7/2-7/15: first full system assembly; first cold comissioning run: tests of JPA operation, field ramping.

Microwave Cavity Detectors

ADMX-HF Design

Conclusion

Extra Slides

- 6/23-7/1: cavity delivered to Yale, characterized on teststand and in fridge.
- 7/2-7/15: first full system assembly; first cold comissioning run: tests of JPA operation, field ramping.

Microwave Cavity Detectors

ADMX-HF Design

Conclusion

Extra Slides

- 6/23-7/1: cavity delivered to Yale, characterized on teststand and in fridge.
- 7/2-7/15: first full system assembly; first cold comissioning run: tests of JPA operation, field ramping.
- 7/20-9/8: system warm; upgrades to motion control, signal chain.

Microwave Cavity Detectors

ADMX-HF Design

Conclusion

Extra Slides

Recent Progress – Fall 2014

- 9/15-10/24: second cold comissioning run:
 - Cold motion control tests: repeatable 100 kHz stepping
 - Succesful simultaneous tuning of cavity and JPA.
 - Measurement of total added noise above zero-point motion: $(0.3 \pm 0.15) hv$: JPA is sub-quantum-limited!
 - Proof-of-principle axion data: two points, t = 200 s at B = 3.7 T $\Rightarrow 300$ kHz at $g_{a\gamma\gamma} \approx 16 \times$ KSVZ (more careful analysis in progress).

Recent Progress – Fall 2014

- 9/15-10/24: second cold comissioning run:
 - Cold motion control tests: repeatable 100 kHz stepping
 - Succesful simultaneous tuning of cavity and JPA.
 - Measurement of total added noise above zero-point motion: $(0.3 \pm 0.15) hv$: JPA is sub-quantum-limited!
 - Proof-of-principle axion data: two points, t = 200 s at B = 3.7 T $\Rightarrow 300$ kHz at $g_{a\gamma\gamma} \approx 16 \times$ KSVZ (more careful analysis in progress).
- 10/29-11/11: system warm for cryocooler upgrade.
- Late 2014: reconfigure magnetic shielding to mitigate JPA gain fluctuations due to vibration in inhomogeneous field.

Microwave Cavity Detectors

ADMX-HF Design

Conclusion

Extra Slides

Questions I hope to address

- Why do we think axions exist?
- Why do we think dark matter is made of axions?
- What parameter space is available to axions?
- What are the principles of microwave cavity axion detection?
- How are these principles realized in ADMX-HF at Yale?
- What is the current status of ADMX-HF?
- What does ADMX-HF hope to accomplish?

Microwave Cavity Detectors

ADMX-HF Design

Conclusion

Extra Slides

Projected Exclusion

 Full data run beginning early 2015!

Ben Brubaker

Microwave Cavity Detectors

ADMX-HF Design

Conclusion

Extra Slides

Projected Exclusion

- Full data run beginning early 2015!
- Three years of data with current technology:
 - $16 33 \,\mu eV$ at $1.5 \times KSVZ$

Microwave Cavity Detectors

ADMX-HF Design

Conclusion

Extra Slides

Outlook: High Frequency Challenges

$$\frac{\mathrm{d}\nu}{\mathrm{d}t} \propto g_{a\gamma\gamma}^4 \frac{m_a^2}{T_S^2} B^4 Q_c V^2$$

Microwave Cavity Detectors

ADMX-HF Design

Conclusion ○○○○● Extra Slides

Outlook: High Frequency Challenges

• SQL:
$$T_{S} \ge \frac{1}{2}v = \frac{1}{2}m_{a}$$

$$\frac{\mathrm{d}\nu}{\mathrm{d}t} \propto g_{a\gamma\gamma}^4 \frac{m_a^2}{T_S^2} B^4 Q_c V^2$$

Microwave Cavity Detectors

ADMX-HF Design

Conclusion

Extra Slides

Outlook: High Frequency Challenges

$$\frac{\mathrm{d}\nu}{\mathrm{d}t} \propto g_{a\gamma\gamma}^4 \frac{m_a^2}{T_S^2} B^4 Q_c V^2$$

• SQL:
$$T_S \ge \frac{1}{2}v = \frac{1}{2}m_a$$

● *B* ∝ \$\$

Microwave Cavity Detectors

ADMX-HF Design

Conclusion

Extra Slides

Outlook: High Frequency Challenges

$$\frac{\mathrm{d}\nu}{\mathrm{d}t} \propto g_{a\gamma\gamma}^4 \frac{m_a^2}{T_S^2} B^4 \frac{Q_c}{V^2} V^2$$

- SQL: $T_S \ge \frac{1}{2}\nu = \frac{1}{2}m_a$
- *B* ∝ \$\$
- $Q_c \propto v^{-2/3}$ for copper.
Microwave Cavity Detectors

ADMX-HF Design

Conclusion

Extra Slides

Outlook: High Frequency Challenges

$$\frac{\mathrm{d}\nu}{\mathrm{d}t} \propto g_{a\gamma\gamma}^4 \frac{m_a^2}{T_S^2} B^4 Q_c V^2$$

- SQL: $T_S \ge \frac{1}{2}v = \frac{1}{2}m_a$
- *B* ∝ \$\$
- $Q_c \propto v^{-2/3}$ for copper.
- $V \propto v^{-3}$

Ben Brubaker

Microwave Cavity Detectors

ADMX-HF Design

Conclusion ○○○○● Extra Slides

Outlook: High Frequency Challenges

$$\frac{\mathrm{d}\nu}{\mathrm{d}t} \propto g_{a\gamma\gamma}^4 \frac{m_a^2}{T_S^2} B^4 Q_c V^2$$

• SQL: $T_S \ge \frac{1}{2}v = \frac{1}{2}m_a$

● *B* ∝ \$\$

• $Q_c \propto v^{-2/3}$ for copper.

• $V \propto v^{-3}$

High frequencies are hard. What can we improve?

Microwave Cavity Detectors

ADMX-HF Design

Conclusion ○○○○● Extra Slides

Outlook: High Frequency Challenges

$$\frac{\mathrm{d}\nu}{\mathrm{d}t} \propto g_{a\gamma\gamma}^4 \frac{m_a^2}{T_S^2} B^4 Q_c V^2$$

• SQL: $T_S \ge \frac{1}{2}v = \frac{1}{2}m_a$

● *B* ∝ \$\$

• $Q_c \propto v^{-2/3}$ for copper.

• $V \propto v^{-3}$

High frequencies are hard. What can we improve?

• Boost *Q_c*: Hybrid superconducting-normal cavities.

Microwave Cavity Detectors

ADMX-HF Design

Conclusion ○○○○● Extra Slides

Outlook: High Frequency Challenges

$$\frac{\mathrm{d}\nu}{\mathrm{d}t} \propto g_{a\gamma\gamma}^4 \frac{m_a^2}{T_S^2} B^4 Q_c V^2$$

• SQL: $T_S \ge \frac{1}{2}v = \frac{1}{2}m_a$

● *B* ∝ \$\$

• $Q_c \propto v^{-2/3}$ for copper.

• $V \propto v^{-3}$

High frequencies are hard. What can we improve?

- Boost *Q_c*: Hybrid superconducting-normal cavities.
- Evade SQL: Single-photon detection and/or squeezed states.

Microwave Cavity Detectors

ADMX-HF Design

Conclusion ○○○○● Extra Slides

Outlook: High Frequency Challenges

$$\frac{\mathrm{d}\nu}{\mathrm{d}t} \propto g_{a\gamma\gamma}^4 \frac{m_a^2}{T_S^2} B^4 Q_c V^2$$

• SQL: $T_S \ge \frac{1}{2}v = \frac{1}{2}m_a$

● *B* ∝ \$\$

• $Q_c \propto v^{-2/3}$ for copper.

• $V \propto v^{-3}$

High frequencies are hard. What can we improve?

- Boost *Q_c*: Hybrid superconducting-normal cavities.
- Evade SQL: Single-photon detection and/or squeezed states.
- Avoid *V* suppresion: Higher-order modes and/or power-combining cavities.

Microwave Cavity Detectors

ADMX-HF Design

Conclusion

Extra Slides

Extra Slides

Ben Brubaker

Hybrid Superconducting Cavities

- Superconducting cavities: high *Q*, but not in high field.
- Type-II superconducting thin films: $(B_{c1})_{\parallel} \sim (\lambda/d)^2$ for $d < \lambda$.
- With appropriate coatings on barrel and copper endcaps, we can increase Q by ~ the aspect ratio of the cavity (~ 6×).
- Promising materials: NbTiN, NbN, MgB₂.
- Field uniformity ($B_r < 50$ G) built in to ADMX-HF design.
- Challenges: good microwave reflectivity, proximity effect, details of stoichiometry, etc.

ADMX-HF Design

Conclusion

Extra Slides

Single Photon Detection and Squeezed States

 Single-photon detection ⇒ no spectral resolution: thermal noise from whole cavity band but no standard quantum limit!

•
$$\frac{\delta P_{\ell}}{\delta P_{sp}} \sim \sqrt{\frac{Q_c}{Q_a}} e^{h\nu/kT} > 1$$
 above ~ 10 GHz, or lower with better Q_c .*

- Squeezed states: beat SQL without sacrificing phase information!
- Axion signal uncorrelated with lab phase reference on long timescales.
- Practical utility limited by loss in commercial components, but may soon be worthwhile.
 - *: S. K. Lamoreaux et al., Phys. Rev. D 88, 035020 (2013).

ADMX-HF Design

Conclusion

Extra Slides

Large volumes at high frequencies

- Higher-order TM modes of a large cavity: C_{0n0} ∝ ν⁻² (better than V ∝ ν⁻³), but mode crossings are increasingly a problem for n ≥ 3.
- Power-combining multiple small cavities in a large magnetic field volume: practical challenges keeping resonances in step.
- Photonic band gap cavities?

Microwave Cavity Detectors

ADMX-HF Design

Conclusion

Extra Slides

Symmetry Violation and EDMs

- By Wigner-Eckart Theorem, expectation values of vector operators must point along spin quantization direction.
- Magnetic and Electric Dipole Moments transform oppositely under *P* and *T* reversal.
- *CP* violation in QCD \Rightarrow neutron EDM. Non-observation constrains $\theta < 10^{-10}$ rad

Microwave Cavity Detectors

ADMX-HF Design

Conclusion

Extra Slides

Microwave Layout

- 3 paths for injection into fridge: transmission, reflection, JPA pump.
- Cryo microwave switch (Radiall) and terminator at still plate for hot/cold load measurement.
- Second-stage amplifier: LNF LNC4_8A: $T_N \approx 3$ K.

Microwave Cavity Detectors

ADMX-HF Design

Conclusion

Extra Slides

Microwave Layout

- GaGe ADC: 14 bits, 2 GS memory, 50 MS/s max sampling.
- Lock-in detection for network analysis.

Theoretical	Motivation

ADMX-HF Design

Conclusion

Extra Slides

Magnet

- 9 T field at 72 A
- Liquid cryogen free
- Persistent
- 16.5 cm bore

Microwave Cavity Detectors

ADMX-HF Design

Conclusion

Extra Slides

ADMX near-term projections

*: I. Stern, arXiv:1403.5332 (2014).

ADMX-HF Design

Conclusion

Extra Slides

Cold Dark Matter Axions?

- If axions are so light, why do they form CDM rather than HDM?
- Thermal relic axions *do* form hot dark matter, like neutrinos, but there is a non-thermal axion production mechanism.
- The misalignment mechanism: anomalous PQ symmetry breaking at $\Lambda_{QCD} \Rightarrow$ a condensate of zero-momentum axions.*
- Sikivie argues that axions can re-thermalize through gravitational interactions and form a BEC.[†]
 - *: J. Preskill, M. Wise, and F. Wilczek, Phys. Lett. B 120, 127 (1983).
 - [†]: P. Sikivie and Q. Yang, Phys. Rev. Lett. **103**, 111301 (2009).

Photos and figures from

- A. S. Chou, U. of M. Cosmology Seminar, 2011.
- NASA: http://www.nasa.gov/multimedia/ imagegallery/image_feature_1163.html
- I. G. Irastorza, U. W. Axion Physics Workshop, 2012.
- U. Washington: http://spectrum.ieee.org/aerospace/ astrophysics/the-hunt-for-the-invisible-axion/
- http://www.rfwireless-world.com/Terminology/ noise-factor-versus-noise-figure.html
- N. Fortson, P. Sandars, and S. Barr, Physics Today 56 (6), 33 (2003).