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Theoretical Motivation
[ ]

Questions | hope to address

@ Why do we think axions exist?

@ Why do we think dark matter is made of axions?

@ What parameter space is available to axions?

@ What are the principles of microwave cavity axion detection?
@ How are these principles realized in ADMX-HF at Yale?

@ What is the current status of ADMX-HF?

@ What does ADMX-HF hope to accomplish?
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Theoretical Motivation
L]

The Strong CP Problem

@ The axion is a pseudoscalar field motivated by the Peccei-Quinn
solution to the strong CP problem.

@ CP Violation: asymmetry between processes involving matter and
antimatter.

@ Two independent sources of CP Violation in QCD from different
sectors of the theory: net effect is captured in a parameter 6.

@ Neutron EDM searches constrain < 10~10,

@ The strong CP problem: why is 6 so small?

Ben Brubaker WIDG Seminar: ADMX-HF 11/18/2014 3/42



Theoretical Motivation
[ ]

Solving the Strong CP Problem: Axions

@ CP-violating term in QCD Lagrangian is
£ coFaFaw

If @ were a field instead of a parameter, the strong CP problem
would solve itself!

@ Goal: introduce an axion field a with QCD coupling of the form

a a~a/1v
LcEFLF
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Solving the Strong CP Problem: Axions

@ CP-violating term in QCD Lagrangian is
£ coFaFaw

If @ were a field instead of a parameter, the strong CP problem
would solve itself!

@ Goal: introduce an axion field a with QCD coupling of the form
Lc 2FaFaw
@ The axion is the Goldstone boson of a new symmetry

spontaneously broken at a scale f.

@ Axion mass and all couplings suppressed by f; = mMj < gay,-
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Theoretical Motivation
L]

Axions and Dark Matter

@ My x gay,: sufficiently light axions interact very weakly with
standard model fields.
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Theoretical Motivation
L]

Axions and Dark Matter

@ My x gay,: sufficiently light axions interact very weakly with
standard model fields.

@ Misalignment produces cold axions in large numbers.
@ Axions can account for cold dark matter!
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Theoretical Motivation
[ ]

Questions | hope to address

@ Why do we think axions exist?

@ Why do we think dark matter is made of axions?

@ What parameter space is available to axions?

@ What are the principles of microwave cavity axion detection?
@ How are these principles realized in ADMX-HF at Yale?

@ What is the current status of ADMX-HF?

@ What does ADMX-HF hope to accomplish?
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Theoretical Motivation
L ]

Axion Parameter Space

Helioscopes (CAST)

WD cooling hint
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*: A. Ringwald, Phys. Dark. Univ. 1, 116 (2012).
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Theoretical Motivation
L ]

Axion Parameter Space
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Axion Parameter Space
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Axion Parameter Space
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Axion Parameter Space
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@ (Atleast) 3 orders

of magnitude to
scan.

@ Coupling is so

small that we must

use intrinsically
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Microwave Cavity Detectors
°

Questions | hope to address

@ Why do we think axions exist?

@ Why do we think dark matter is made of axions?

@ What parameter space is available to axions?

@ What are the principles of microwave cavity axion detection?
@ How are these principles realized in ADMX-HF at Yale?

@ What is the current status of ADMX-HF?

@ What does ADMX-HF hope to accomplish?
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Microwave Cavity Detectors
[ ]

Properties of Axion CDM

@ Very light particles = huge number density.
@ Virialization: v ~ 270 km/s — 8~ 1073,

@ Axion signal “quality factor:”
Qa = Emass/Ekin :ﬂ_z ~ 106-

@ De Broglie wavelength: A5 ~ 7/maB ~ 100 m
for my ~ 1072 eV.

@ Coherent effects on laboratory scales =
more like a classical field than particles.
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Microwave Cavity Detectors
[ ]

Microwave Cavity Axion Searches — Concept

e i @ Sikivie*: search for axions with photon
coupling £L C gay,aE - B.

PRIMAKOFF

EFFECT @ The Primakoff Effect: classical field at one leg

to compensate for weakness of vertex.
@ Kinematics: my = v ~ 250 MHz - 250 GHz.
@ Resonant enhancement by Q of cavity.

@ Cryogenics and low-noise amplifier to reduce noise.

*: P. Sikivie, Phys. Rev. Lett. 51, 1415 (1983).
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Microwave Cavity Detectors
L]

Microwave Cavity Axion Searches — Signal

Conversion Power:

P~ ng (pa/Ma) B2 QcVCnmi
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Microwave Cavity Axion Searches — Signal

Conversion Power:
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Microwave Cavity Detectors
L]

Microwave Cavity Axion Searches — Signal

Conversion Power:

P~ ggyy (pa/Ma) B2QcVCpmy

@ (Matrix element)?

@ Axion number density

@ Virtual photon number density

@ Resonant enhancement of axion-photon conversion

@ Effective volume occupied by cavity mode
= best for low-order TM modes: L ~ v~!
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Microwave Cavity Detectors
L]

Microwave Cavity Axion Searches — Signal

Conversion Power:

P~ ggyy (pa/Ma) B2 QcVCnm

@ (Matrix element)?

@ Axion number density

@ Virtual photon number density

@ Resonant enhancement of axion-photon conversion

@ Effective volume occupied by cavity mode
= best for low-order TM modes: L ~ v~!

@ P~5x10"22 W (~ 1 10 keV WIMP event/year)
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Microwave Cavity Detectors
[ ]

Microwave Cavity Axion Searches — Noise

The Radiometer Equation:

P t
SNR = 17\ A
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Microwave Cavity Axion Searches — Noise

The Radiometer Equation:

P t
SNR =17\ s

@ Noise temperature Tg « variance of Gaussian noise due to
blackbody radiation of cavity.
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Microwave Cavity Detectors
[ ]

Microwave Cavity Axion Searches — Noise

The Radiometer Equation:

P t
SNR = 17\ A

@ Noise temperature Tg « variance of Gaussian noise due to
blackbody radiation of cavity.

@ Linear detection:
Qa> Qc = Avy < Avg.

@ Measurement time: axion signal remains constant, noise
decreases as 1/ Vt.
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Microwave Cavity Detectors
L]

Microwave Cavity Axion Searches — Scan Rate

50000

@ After each measurement, tune

Ry ) cavity resonance by
30000 P Mgoszgz'w;gm E half-linewidth:
o 2o o o 1/20, 30 Kz error
s o o 4000.533 MHz
oo e 1 @ Scan rate:
10000 - i DDD E
dv a
— —2B*Q. V2
4000 40005 4001 dt a}/y T2
Frequency (MHz)
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Microwave Cavity Detectors
[ ]

ADMX (The Axion Dark Matter eXperiment)

/ @ Collaboration of U. Washington (host),
‘ U. Florida, LLNL, UC Berkeley, NRAO,
Sheffield U.

@ 1996-2009: excluded KSVZ axions with
1.9 ueV < m, < 3.6 ueV (460 — 860 MHz).*

S. J. Asztalos et al., Phys. Rev. Lett. 104, 041301 (2010).
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ADMX (The Axion Dark Matter eXperiment)

/ @ Collaboration of U. Washington (host),
‘ U. Florida, LLNL, UC Berkeley, NRAO,
Sheffield U.

@ 1996-2009: excluded KSVZ axions with
1.9 ueV < m, < 3.6 ueV (460 — 860 MHz).*

@ Current focus is reducing Tg to improve scan
rate:

o Liquid Helium — Dilution refrigerator expected
in 2015.

e Willimprove ¥ by factor of 400!
e Enabled by SQUID technology.

S. J. Asztalos et al., Phys. Rev. Lett. 104, 041301 (2010).
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ADMX-HF Design
.

Questions | hope to address

@ Why do we think axions exist?

@ Why do we think dark matter is made of axions?
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ADMX-HF Design
°

ADMX-HF (High-Frequency)

@ Will scan in parallel with ADMX starting around 5 GHz (~ 20 ueV).

@ Will serve as an R&D testbed for extending the microwave cavity
search principle to higher frequencies.

@ Microwave cavity experiments get hard at high frequencies, but we
can reach the axion model band with current technology.

o Dilution refrigerator in initial design.

o Tunable Josephson Parametric Amplifiers (JPAs): ultra-low-noise
amplifiers developed ~ 2009.
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ADMX-HF Design
.

ADMX-HF Collaboration

@ Yale University (host)
Steve Lamoreaux, Yulia Gurevich, Ben Brubaker, Sid Cahn

@ UC Berkeley
Karl Van Bibber, Tim Shokair, Austin Lo, Maria Simanovskaia,
Jaben Root

@ Lawrence Livermore National Lab

Gianpaolo Carosi

@ CU Boulder/JILA
Konrad Lehnert, Dan Palken
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ADMX-HF Design
]

ADMX-HF Layout
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ADMX-HF Design
]

ADMX-HF Layout

Ben Brubaker

@ 9 T superconducting solenoid
@ Dilution Refrigerator: T ~ 100 mK

@ Copper cavity with Q; ~ 20, 000,
tunable from 3.5 to 5.85 GHz

@ JPA: sub-quantum-limited, tunable
from 4.4 to0 6.4 GHz

WIDG Seminar: ADMX-HF

11/18/2014

19/42



ADMX-HF Design
]

ADMX-HF Layout

@ 9 T superconducting solenoid
@ Dilution Refrigerator: T ~ 100 mK

@ Copper cavity with Q; ~ 20, 000,
tunable from 3.5 to 5.85 GHz

@ JPA: sub-quantum-limited, tunable
from 4.4 to0 6.4 GHz

@ Whole experiment takes place in a
room in WLab West!

Ben Brubaker WIDG Seminar: ADMX-HF 11/18/2014 19/42



ADMX-HF Design
]

ADMX-HF Layout

@ 9 T superconducting solenoid
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ADMX-HF Design
.

Cavity and Motion Control

@ Q; ~ 20,000, tunable
from 3.5 to 5.85 GHz.

@ Tuning via rotation of
off-axis Cu rod.

@ Cryogenic motion

control via stepper
motors and kevlar lines
— 0.003° precision.

@ No heat load from
motion control at
100 mK.
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ADMX-HF Design
.

ADMX-HF Layout

@ 9 T superconducting solenoid
@ Dilution Refrigerator: T ~ 100 mK

@ Copper cavity with Q; ~ 20,000,
tunable from 3.5 to 5.85 GHz

@ JPA: sub-quantum-limited, tunable
from 4.4 t0 6.4 GHz
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ADMX-HF Design
.

Quantum Limits on Noise Performance

@ Linear detection: measuring amplitude and phase simultaneously
= Ts=hv/2evenat T =0 K.
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ADMX-HF Design
.

Quantum Limits on Noise Performance

@ Linear detection: measuring amplitude and phase simultaneously
= Ts=hv/2evenat T =0 K.

@ Need to amplify signal: all loss to room temperature degrades SNR.
@ Noise performance of first amplifier is critical:

F1,G1 2,62 F3, G3
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ADMX-HF Design
.

Quantum Limits on Noise Performance

@ Linear detection: measuring amplitude and phase simultaneously
= Ts=hv/2evenat T =0 K.

@ Need to amplify signal: all loss to room temperature degrades SNR.
@ Noise performance of first amplifier is critical:

F1,G1 2,62 F3, G3

N | | | ouTt
| | |
Fa-1 _ Fa-l At
P g g ¥ i

@ The Standard Quantum Limit: A phase-insensitive linear amplifier
must add noise > hv/2.*

*: C. M. Caves, Phys. Rev. D 26, 1817 (1982).
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ADMX-HF Design
°

Josephson Parametric Amplifier

@ An LC circuit with nonlinear SQUID
inductance = parametric gain.

@ Energy transfer from an intense pump tone
near resonance to nearby frequencies.

@ The JPA gain is phase-sensitive: no standard
quantum limit!
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ADMX-HF Design
°

Josephson Parametric Amplifier

1l @ An LC circuit with nonlinear SQUID
Hﬂw “ inductance = parametric gain.
|
@ Energy transfer from an intense pump tone
near resonance to nearby frequencies.

@ The JPA gain is phase-sensitive: no standard
quantum limit!

@ Narrow-band, but SQUID inductance also a
function of flux = resonance is tunable, but
very good magnetic shielding required.
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ADMX-HF Design
.

JPA Tuning
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ADMX-HF Design
.

Signal Chain

Analysis is conceptually simple, requires minimal data processing:

@ Cavity signal is mixed down to

Toomk MHz and digitized for
t ~ 25 min.
O .. @ Compute power spectrum and

look for excess power in each
axion-width bin.

@ Step resonance by Av./2 and
repeat O (10*) times.

@ Tg calibrated in situ using
blackbody source at known
temperature.

Ben Brubaker WIDG Seminar: ADMX-HF 11/18/2014 26/42



Conclusion
[ ]

Questions | hope to address

@ Why do we think axions exist?

@ Why do we think dark matter is made of axions?

@ What parameter space is available to axions?

@ What are the principles of microwave cavity axion detection?
@ How are these principles realized in ADMX-HF at Yale?

@ What is the current status of ADMX-HF?

@ What does ADMX-HF hope to accomplish?
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Conclusion
L]

Recent Progress — Summer 2014

@ 6/23-7/1: cavity delivered to
Yale, characterized on
teststand and in fridge.
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Conclusion
L]

Recent Progress — Summer 2014

@ 6/23-7/1: cavity delivered to
Yale, characterized on
teststand and in fridge.

{

@ 7/2-7/15: first full system
assembly; first cold
comissioning run: tests of JPA
operation, field ramping.

./N\
| &

@ 7/20-9/8: system warm;
upgrades to motion control,
signal chain.
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Conclusion
[ ]

Recent Progress — Fall 2014

@ 9/15-10/24: second cold comissioning run:
o Cold motion control tests: repeatable 100 kHz stepping
o Succesful simultaneous tuning of cavity and JPA.

o Measurement of total added noise above zero-point motion:
(0.3 £ 0.15) hv: JPA is sub-quantum-limited!

o Proof-of-principle axion data: two points, t =200satB=3.7T
= 300 kHz at g, ~ 16x KSVZ (more careful analysis in progress).
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Recent Progress — Fall 2014

@ 9/15-10/24: second cold comissioning run:
o Cold motion control tests: repeatable 100 kHz stepping
o Succesful simultaneous tuning of cavity and JPA.

o Measurement of total added noise above zero-point motion:
(0.3 £ 0.15) hv: JPA is sub-quantum-limited!

o Proof-of-principle axion data: two points, t =200satB=3.7T
= 300 kHz at g, ~ 16x KSVZ (more careful analysis in progress).

@ 10/29-11/11: system warm for cryocooler upgrade.

@ Late 2014: reconfigure magnetic shielding to mitigate JPA gain
fluctuations due to vibration in inhomogeneous field.
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Questions | hope to address

@ Why do we think axions exist?

@ Why do we think dark matter is made of axions?

@ What parameter space is available to axions?

@ What are the principles of microwave cavity axion detection?
@ How are these principles realized in ADMX-HF at Yale?

@ What is the current status of ADMX-HF?

@ What does ADMX-HF hope to accomplish?
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Projected Exclusion
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@ SQL: Tg > 3v=1m,
Q;V? @ B $$
@ Q. o« v=2/3 for copper.

dv 4 mE o,
d—tOC ay,y?éB

@ Voy3
High frequencies are hard. What can we improve?
@ Boost Q.: Hybrid superconducting-normal cavities.
@ Evade SQL: Single-photon detection and/or squeezed states.

@ Avoid V suppresion: Higher-order modes and/or power-combining
cavities.
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Hybrid Superconducting Cavities

@ Superconducting cavities: high Q, but not in high field.
@ Type-Il superconducting thin films: (Bc), ~ (1/d)? for d < A.

@ With appropriate coatings on barrel and copper endcaps, we can
increase Q by ~ the aspect ratio of the cavity (~ 6x).

@ Promising materials: NbTiN, NbN, MgB,.
@ Field uniformity (B, < 50 G) built in to ADMX-HF design.

@ Challenges: good microwave reflectivity, proximity effect, details of
stoichiometry, etc.
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Single Photon Detection and Squeezed States

@ Single-photon detection = no spectral resolution: thermal noise
from whole cavity band but no standard quantum limit!

) P ~ %ehv/” > 1 above ~ 10 GHz, or lower with better Q..*
6Psp Q,

Im(E]

@ Squeezed states: beat SQL without
sacrificing phase information!

@ Axion signal uncorrelated with lab phase
reference on long timescales.

RelE]

@ Practical utility limited by loss in
commercial components, but may soon
be worthwhile.

*: S. K. Lamoreaux et al., Phys. Rev. D 88, 035020 (2013).
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Large volumes at high frequencies

@ Higher-order TM modes of a large cavity:
Cono o v~2 (better than V « v~3), but
mode crossings are increasingly a
problem for n > 3.

@ Power-combining multiple small cavities in
a large magnetic field volume: practical
challenges keeping resonances in step.

@ Photonic band gap cavities?
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TMg1q Electric Field
for 96-post Array
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Symmetry Violation and EDMs

@ By Wigner-Eckart Theorem, expectation values of vector operators
must point along spin quantization direction.

@ Magnetic and Electric Dipole Moments transform oppositely under
P and T reversal.

@ CP violation in QCD = neutron EDM. Non-observation constrains
6 <1079 rad
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Microwave Layout

@ 3 paths for injection into
fridge: transmission,
reflection, JPA pump.

@ Cryo microwave switch
(Radiall) and terminator
at still plate for hot/cold
load measurement.

@ Second-stage amplifier:
LNF LNC4_8A:
v = 3K
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Microwave Layout

¢ QO o o
[Tx RHP»-«T&]

@ GaGe ADC: 14 bits, 2 GS memory, 50 MS/s max sampling.
@ Lock-in detection for network analysis.
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@ 9Tfieldat72 A

@ Liquid cryogen
free

@ Persistent

@ 16.5 cm bore
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ADMX near-term projections

/Too Much Dark Matter
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ADMX-HF Projected Limits
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Axion Mass (ueV)

*: I. Stern, arXiv:1403.5332 (2014).
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Cold Dark Matter Axions?

@ If axions are so light, why do they form CDM rather than HDM?

@ Thermal relic axions do form hot dark matter, like neutrinos, but
there is a non-thermal axion production mechanism.

@ The misalignment mechanism: anomalous PQ symmetry breaking
at Aqcp = a condensate of zero-momentum axions.”

@ Sikivie argues that axions can re-thermalize through gravitational
interactions and form a BEC."

*: J. Preskill, M. Wise, and F. Wilczek, Phys. Lett. B 120, 127 (1983).
: P. Sikivie and Q. Yang, Phys. Rev. Lett. 103, 111301 (2009).
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Photos and figures from

@ A. S. Chou, U. of M. Cosmology Seminar, 2011.

@ NASA: http://www.nasa.gov/multimedia/
imagegallery/image_feature_1163.html

@ |. G. Irastorza, U. W. Axion Physics Workshop, 2012.

@ U. Washington: http://spectrum.ieee.org/aerospace/
astrophysics/the-hunt-for-the-invisible—-axion/

@ http://www.rfwireless—world.com/Terminology/
noise—factor-versus—noise—figure.html

@ N. Fortson, P. Sandars, and S. Barr, Physics Today 56 (6), 33
(2003).
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