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Nuclear Spin Independent (NSI)
Every nucleon contributes

Nuclear Spin Dependent (NSD)
Only unpaired nucleons 
contribute

NSI      1%
NSD  14%

Using diatomic molecules enhances NSD

Parity Violation
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Best measurement: Wieman 133Cs 

Uncertainties:

→ NSD PV smaller, more difficult to measure.
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Also: 133Cs is the only
nonzero measurement 
of NSD in atoms
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Independent of 
nuclear mass A

Proportional to A2/3

Can differentiate effects by measuring multiple nuclear species



spin tilted along momentum
due to weak interaction
( σ⋅p helicity term)

orbital
momentum
around core

= +

Current loop
(dipole)

Current helix
(anapole)

Simple model for nuclear anapole
(valence nucleon + constant-density core):

Anapole Moment

Causes delta 
function vector 
potential at origin



Motivation

Anapole Moment
• Nucleon – nucleon coupling constants
• Nuclear structure 
• “Anapole Moment Table” - unique signatures 
for each nuclear species

“Measurement of parity 
violation in electron-quark 
scattering”
The Jefferson Lab PVDIS 
Collaboration
Nature 506, 67-70

Z0 Exchange
• Electron – nucleon weak coupling constants  
(C2N, C2P)
• Related to fundamental electron-quark 
weak coupling constants (C2u, C2d)
• Complementary to PVDIS measurements
(different linear combinations of C2

constants)
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Even / Odd State Mixing

Atomic, molecular states 
are parity eigenstates

Weak interaction mixes 
even & odd states
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Diatomic Molecules
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Amplify mixing by making ∆ small:

Diatomic molecules:
Large moment of inertia
→ rotational levels have small ∆
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(vs.  ~1eV for 
atoms)



Zeeman Tuning

Closely spaced levels can be brought to crossing with B-field

• B-field required: ~ 1 Tesla
→ easy with superconducting
magnet

• How close?
• 1 part in 107 uniformity 
→ ∆ ~ 103 Hz 
(vs 1014 Hz for atoms)
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Viable Nuclei For Anapole Measurement
•Everything OK (one dot/isotope)
•Only molecular spectral data needed
•Only isotopically enriched 

sample needed
•Maybe possible with 
cryogenic beam source



Chosen Molecule:  137BaF

Why 137BaF?
• Odd neutron (133Cs had odd proton)
• Heavy → larger anapole moment
• Spectroscopy available
• BaF molecular beams had been made before
• Large enough natural abundance – don’t need enriched source
• Transitions are diode laser accessible

Development & testing:  138BaF
• W = 0 (no parity violation)
• Larger natural abundance (~75% vs ~11% for 137Ba)
• Can use same source as 137Ba 
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N0: # of molecules in lower state
∆: Detuning
d: dipole matrix element
W: weak matrix element

Signal:
population of
upper (detection)
state at end

“Stark Interference” term:
without this, dependence
on W would be second order

Second order.
Very small.
Ignore.



Asymmetry
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1) Measure Signal for +E0 and –E0

2) Form Asymmetry:

3) Solve for W in terms 
of known quantities.



Example Signal & Asymmetry

• Calculated by numerically solving Schrodinger eqn.
• Assumes W = 5Hz

Signal Asymmetry
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Multiple crossings because
of hyperfine structure

Matrix element W is different at each crossing
Underlying PV magnitudes (κZ & κa) are same at all crossings

→ Measure at different crossings as systematic check

Multiple Crossings



Level Crossing Spectroscopy in 138BaF

NIS mmm ,,

S: Electron spin
I: Nuclear spin
N: Molecule rotational 

ang. mom.

Want to measure PV at multiple crossings as systematic check
→ Need to find B field values where levels cross

axisarinternucle

molecule:n̂

ISnW aZ


⋅×+∝ )ˆ)(κκ(

PV magnitudes.
Same at all crossings

Angular factor.
Different for 
each crossing.



Increasing B Field
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Finding Crossing Locations

Maximum signal occurs when B-field is set such that ∆=0



Spectroscopy Results

“Zeeman-tuned rotational level-crossing spectroscopy in a diatomic free radical”
S.B. Cahn et. al.
arXiv: 1310.6450

Soon to be in PRL
Also measured:
• Dipole matrix elements (d)
• Polarizabilities (α)
• Lineshapes
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New Interaction Region

• Old interaction regions: 
2 electrodes, 7 electrodes

• New interaction region: 
32 electrodes
→ better control over E field
→ one cycle sine wave for 
PV measurement

• Prisms allow laser 
delivery for state 
preparation



•138Ba Expected:
W = 0

•Measured:
W = -5.5 2.6 Hz (stat)

• ~2.5 hours of data

• Previous  best sensitivity: 
2.9 Hz in 30 hours with 

atomic Dy*

• Measured W due to 
systematic effects

*Nguyen, Budker, DeMille, & Zolotorev, PRA 56, 3453 (1997)

First PV Data with 138BaF



Evidence of Systematics

Data Numerical Calculation

• Non-reversing E field (ENR) → even part of Asymmetry
(e.g. vertical offset)

• ENR + B gradients (Bgrad) → odd part of Asymmetry
(looks like parity violation!)

• Need to measure & then eliminate ENR & Bgrad
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B field Measurement w/ Molecule Signal

E(z)

z

z

B(z)

B field only matters where E is non-zero

→ Measure B(z) by translating E pulse across z and recording Signal

Want to “flatten” B field so that it is uniform
→ Must measure B field first



E(z)

zz2z1 z3

Apply E-field

B

Signal

B1 B2 B3

Find signal maximum
( i.e. ∆ = 0 )

z1 z3
z

z2

B1
B2

B3

B(z)

Repeat across 
interaction 
region to get B(z)

B field Measurement w/ Molecule Signal



B field Shimming

• B field measured (a)
• Shim coils adjusted to flatten field
• B field measured again (b)
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Interference term

ER(t)
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“Signal Difference”
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E Field Measurement w/ Molecule Signal



• Set ∆ = constant
• Take data over range of τ
(applied E location)

•Repeat at a range of ∆ to 
construct ENR(∆)

•Fourier transform to get ENR(t)

( ) ( ) ( ) ( )[ ] ( ) ( )[ ] ( )[ ]τ∆∆−τ∆∆∆∝−−+ sinImcosRe NRNRRRR EEEESES 2

from data
fit function:

2 fit parameters: ( a, b )

data

τ

Sig. Diff. fit function

E Field Measurement w/ Molecule Signal

a * cos(∆τ) + b * sin (∆τ) 



ENR(t) Measurement Example
Interference Term Fit ENR(∆)

ENR(t)

Repeat over 
range of ∆

Fourier 
Transform



ENR(t) Shimming Results

Before
Shimming

After 1 Shim 
Iteration

After 2 Shim 
Iterations

“Shimming” = 
Applying voltages to 
counteract ENR
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Recent Data

Measured:
W = -8.2 1.2 Hz (stat)

Why do systematics remain?

Part of ENR lies outside
interaction region
→ can’t be shimmed out

Numerical calculations:
This ENR plus reasonable Bgrad

still gives large W



Longer E-field Region

Plan: Lengthen electrodes 
→ can shim E fields and measure B fields further out



Future Work

• Make new interaction region with longer electrodes

• Shim out ENR and Bgrad

• Measure PV in 138BaF (Should be zero)

• Improvements in signal (hexapole lens, cryogenic source)

• Measure PV in 137BaF (Expected W ~5Hz)
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