Parity Violation in Diatomic Molecules

<u>Jeff Ammon</u>, E. Altuntas, S.B. Cahn, R. Paolino*, D. DeMille *Physics Department, Yale University* *Physics Department, US Coast Guard Academy

ALL T ET VERITAS

Funding: NSF

Outline

- 1. Introduction: Parity violating effects, motivation
- 2. <u>Why Diatomic Molecules?</u>
- 3. <u>The Experiment</u>: Schematic, signal
- 4. <u>Level Crossing Spectroscopy in ¹³⁸BaF</u>
- 5. <u>First PV Data with ¹³⁸BaF</u>: Evidence of systematics
- 6. <u>E & B Field Systematics:</u> How to measure & eliminate
- 7. <u>New Data</u>
- 8. Future Work

Parity Violation

<u>Nuclear Spin Independent (NSI)</u> Every nucleon contributes

 $H_{\rm NSI} \propto \left(\vec{\sigma} \cdot \vec{p} \right) \delta^3 \left(\vec{r} \right)$

Nuclear Spin Dependent (NSD) Only unpaired nucleons contribute

$$H_{\rm NSD} \propto (\vec{\sigma} \cdot \vec{I}) (\vec{\sigma} \cdot \vec{p}) \, \delta^3 \left(\vec{r} \right)$$

 $\vec{\sigma}$: electron spin

 \vec{p} : electron mom.

 \vec{I} : nuclear spin

 \vec{r} : electron pos.

Best measurement: Wieman ¹³³Cs

Uncertainties:NSI1%Also: 133Cs is the onlyNSD14%nonzero measurementof NSD in atoms

Using diatomic molecules enhances NSD

 \rightarrow NSD PV smaller, more difficult to measure.

NSD PV Effects

Can differentiate effects by measuring multiple nuclear species

Anapole Moment

Motivation

Z⁰ Exchange

- Electron nucleon weak coupling constants (C_{2N}, C_{2P})
- Related to fundamental electron-quark weak coupling constants (C_{2u}, C_{2d})
- Complementary to PVDIS measurements (different linear combinations of C₂ constants)

Anapole Moment

- Nucleon nucleon coupling constants
- Nuclear structure
- "Anapole Moment Table" unique signatures for each nuclear species

"Measurement of parity violation in electron-quark scattering" The Jefferson Lab PVDIS Collaboration Nature **506**, 67-70

Outline

- 1. <u>Introduction</u>: Parity violating effects, motivation
- 2. <u>Why Diatomic Molecules?</u>
- 3. <u>The Experiment</u>: Schematic, signal
- 4. <u>Level Crossing Spectroscopy in ¹³⁸BaF</u>
- 5. <u>First PV Data with ¹³⁸BaF</u>: Evidence of systematics
- 6. <u>E & B Field Systematics:</u> How to measure & eliminate
- 7. <u>New Data</u>
- 8. Future Work

Even / Odd State Mixing

Atomic, molecular states are parity eigenstates

$$|+\rangle \rightarrow |+\rangle + \delta |-\rangle$$

Weak interaction mixes even & odd states

Diatomic Molecules

Zeeman Tuning

Closely spaced levels can be brought to crossing with B-field

- B-field required: ~ 1 Tesla
 → easy with superconducting magnet
- Energy $| -\rangle$ $| \uparrow \rangle$ $| + \rangle$ $| \downarrow \rangle$ $1 \top$ B Field

- How close?
- 1 part in 10^7 uniformity $\rightarrow \Delta \sim 10^3$ Hz (vs 10^{14} Hz for atoms)

Viable Nuclei For Anapole Measurement

58	59	60	61	62	63	64	65	66	67	68	69	70	71
Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
90	91	92	93	94	95	96	97	98	99	100	101	102	103
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

Chosen Molecule: ¹³⁷BaF

Why ¹³⁷BaF?

- Odd neutron (¹³³Cs had odd proton)
- Heavy \rightarrow larger anapole moment
- Spectroscopy available
- BaF molecular beams had been made before
- Large enough natural abundance don't need enriched source
- Transitions are diode laser accessible

Development & testing: ¹³⁸BaF

- W = 0 (no parity violation)
- Larger natural abundance (~75% vs ~11% for ¹³⁷Ba)
- Can use same source as ¹³⁷Ba

Outline

- 1. <u>Introduction</u>: Parity violating effects, motivation
- 2. <u>Why Diatomic Molecules?</u>
- 3. <u>The Experiment</u>: Schematic, signal
- 4. <u>Level Crossing Spectroscopy in ¹³⁸BaF</u>
- 5. <u>First PV Data with ¹³⁸BaF</u>: Evidence of systematics
- 6. <u>E & B Field Systematics:</u> How to measure & eliminate
- 7. <u>New Data</u>
- 8. Future Work

Experimental Schematic

Signal

Applied E field: $E(t) = E_0 \sin(\omega t)$

 N_0 : # of molecules in lower state Δ : Detuning d: dipole matrix element W: weak matrix element

$$S(E_0) = 4N_0 \sin^2 \left(\pi \frac{\Delta}{\omega} \right) \left[\left(\frac{dE_0}{\omega} \right)^2 + 2\frac{W}{\Delta} \frac{dE_0}{\omega} + \frac{W^2}{\Delta^2} \right]$$

Signal: population of upper (detection) state at end

"Stark Interference" term: without this, dependence on W would be second order Second order. Very small. Ignore.

Asymmetry

$$S(E_0) = 4N_0 \sin^2 \left(\pi \frac{\Delta}{\omega}\right) \left[\left(\frac{dE_0}{\omega}\right)^2 + 2\frac{W}{\Delta} \frac{dE_0}{\omega} \right]$$

1) Measure Signal for $+E_0$ and $-E_0$

2) Form Asymmetry:

$$A = \frac{S(+E_0) - S(-E_0)}{S(+E_0) + S(-E_0)} = \frac{W}{\Delta} \cdot \frac{\omega}{dE_0}$$

3) Solve for *W* in terms of known quantities.

Example Signal & Asymmetry

- Calculated by numerically solving Schrodinger eqn.
- Assumes W = 5Hz

Outline

- 1. <u>Introduction</u>: Parity violating effects, motivation
- 2. <u>Why Diatomic Molecules?</u>
- 3. <u>The Experiment</u>: Schematic, signal
- 4. Level Crossing Spectroscopy in ¹³⁸BaF
- 5. <u>First PV Data with ¹³⁸BaF</u>: Evidence of systematics
- 6. <u>E & B Field Systematics:</u> How to measure & eliminate
- 7. <u>New Data</u>
- 8. <u>Future Work</u>

Multiple Crossings

Matrix element W is different at each crossing Underlying PV magnitudes ($\kappa_z \& \kappa_a$) are same at all crossings

 \rightarrow Measure at different crossings as systematic check

Level Crossing Spectroscopy in ¹³⁸BaF

 $|m_{S}, m_{I}, m_{N}\rangle$

S: Electron spinI: Nuclear spinN: Molecule rotational ang. mom.

 \hat{n} : molecule internuclear axis

Want to measure PV at multiple crossings as systematic check \rightarrow Need to find B field values where levels cross

Finding Crossing Locations

Maximum signal occurs when B-field is set such that Δ =0

Spectroscopy Results

"Zeeman-tuned rotational level-crossing spectroscopy in a diatomic free radical" S.B. Cahn et. al. arXiv: 1310.6450

Soon to be in PRL

Also measured:

- Dipole matrix elements (d)
- Polarizabilities (α)
- Lineshapes

Outline

- 1. <u>Introduction</u>: Parity violating effects, motivation
- 2. <u>Why Diatomic Molecules?</u>
- 3. <u>The Experiment</u>: Schematic, signal
- 4. <u>Level Crossing Spectroscopy in ¹³⁸BaF</u>
- 5. <u>First PV Data with ¹³⁸BaF</u>: Evidence of systematics
- 6. <u>E & B Field Systematics:</u> How to measure & eliminate
- 7. <u>New Data</u>
- 8. Future Work

New Interaction Region

Old interaction regions:
2 electrodes, 7 electrodes

- New interaction region:
 32 electrodes
- \rightarrow better control over E field
- \rightarrow one cycle sine wave for PV measurement

 Prisms allow laser delivery for state preparation

First PV Data with ¹³⁸BaF

systematic effects

*Nguyen, Budker, DeMille, & Zolotorev, PRA 56, 3453 (1997)

Evidence of Systematics

- Non-reversing E field $(E_{NR}) \rightarrow$ even part of Asymmetry (e.g. vertical offset)
- E_{NR} + B gradients (B_{grad}) \rightarrow odd part of Asymmetry (looks like parity violation!)
- Need to measure & then eliminate $E_{NR} \& B_{grad}$

Outline

- 1. <u>Introduction</u>: Parity violating effects, motivation
- 2. <u>Why Diatomic Molecules?</u>
- 3. <u>The Experiment</u>: Schematic, signal
- 4. <u>Level Crossing Spectroscopy in ¹³⁸BaF</u>
- 5. <u>First PV Data with ¹³⁸BaF</u>: Evidence of systematics
- 6. <u>E & B Field Systematics:</u> How to measure & eliminate
- 7. <u>New Data</u>
- 8. Future Work

B field Measurement w/ Molecule Signal

Want to "flatten" B field so that it is uniform

 \rightarrow Must measure B field first

B field only matters where E is non-zero

 \rightarrow Measure B(z) by translating E pulse across z and recording Signal

B field Measurement w/ Molecule Signal

B field Shimming

- B field measured (a)
- Shim coils adjusted to flatten field
- B field measured again (b)

E Field Measurement w/ Molecule Signal

 $c_{-} \propto \int E(t)e^{-i\Delta t}dt$ 1st order perturbation $\propto E(\Delta)$ (F.T. of E(t))

 $E_{NR}(t) \qquad E_{R}(t) \qquad E_{R}(t+\tau) \qquad t \qquad t$

 $c_{-} \propto E_{NR}(\Delta) + E_{R}(\Delta)$

 $c_{-} \propto E_{NR}(\Delta) + e^{i\Delta \tau} E_{R}(\Delta)$ shifted E_{R}

 $S \propto |E_{NR}(\Delta)|^{2} + |E_{R}(\Delta)|^{2} + E_{R}(\Delta)[\operatorname{Re}[E_{NR}(\Delta)]\cos(\Delta\tau) - \operatorname{Im}[E_{NR}(\Delta)]\sin(\Delta\tau)]$ Interference term

 $S(+E_R) - S(-E_R) \propto 2E_R(\Delta) [\operatorname{Re}[E_{NR}(\Delta)] \cos(\Delta \tau) - \operatorname{Im}[E_{NR}(\Delta)] \sin(\Delta \tau)]$ "Signal Difference"

E Field Measurement w/ Molecule Signal

- Set Δ = constant
- Take data over range of τ (applied E location)

$$2 \text{ fit parameters: } (a, b)$$

$$S(+E_R) - S(-E_R) \propto 2E_R(\Delta) [\operatorname{Re}[E_{NR}(\Delta)] \cos(\Delta \tau) - \operatorname{Im}[E_{NR}(\Delta)] \sin(\Delta \tau)]$$
from data

fit function:

a *
$$cos(\Delta \tau)$$
 + b * $sin(\Delta \tau)$

•Repeat at a range of Δ to construct $E_{NR}(\Delta)$

•Fourier transform to get $E_{NR}(t)$

E_{NR}(t) Measurement Example

E_{NR}(t) Shimming Results

Outline

- 1. <u>Introduction</u>: Parity violating effects, motivation
- 2. <u>Why Diatomic Molecules?</u>
- 3. <u>The Experiment</u>: Schematic, signal
- 4. <u>Level Crossing Spectroscopy in ¹³⁸BaF</u>
- 5. <u>First PV Data with ¹³⁸BaF</u>: Evidence of systematics
- 6. <u>E & B Field Systematics:</u> How to measure & eliminate
- 7. <u>New Data</u>
- 8. Future Work

Recent Data

Measured: W = -8.2 1.2 Hz (stat)

Why do systematics remain?

Part of E_{NR} lies outside → interaction region → can't be shimmed out

Numerical calculations: This E_{NR} plus reasonable B_{grad} still gives large W

Longer E-field Region

Plan: Lengthen electrodes

 \rightarrow can shim E fields and measure B fields further out

Future Work

- Make new interaction region with longer electrodes
- Shim out E_{NR} and B_{grad}
- Measure PV in ¹³⁸BaF (Should be zero)
- Improvements in signal (hexapole lens, cryogenic source)
- Measure PV in ¹³⁷BaF (Expected W ~5Hz)