Latest Results on Reactor Antineutrino Disappearance at Daya Bay

Karsten M. Heeger Yale University

On behalf of the Daya Bay Collaboration

Yale, September 30, 2013

Reactor Neutrinos

2012 - Measurement of θ_{13} with Reactor Neutrinos

2008 - Precision measurement of Δm_{12}^2 . Evidence for oscillation

2003 - First observation of reactor antineutrino disappearance

1995 - Nobel Prize to Fred Reines at UC Irvine

1980s & 1990s - Reactor neutrino flux measurements in U.S. and Europe

1956 - First observation of (anti)neutrinos

Past Reactor Experiments Hanford Savannah River ILL, France Bugey, France Rovno, Russia Goesgen, Switzerland Krasnoyark, Russia Palo Verde Chooz, France

55 years of liquid scintillator detectors a story of varying baselines... 2

Reactor Antineutrinos

Source

\overline{v}_{e} from β -decays of n-rich fission products

Detection

inverse beta decay $\overline{v}_e + p \rightarrow e^+ + n$

> 99.9% of v_e are produced by fissions in ²³⁵U, ²³⁸U, ²³⁹Pu, ²⁴¹Pu

mean energy of Ve: 3.6 MeV

only disappearance experiments possible

Observation of Reactor \overline{v}_e Disappearance

~ 180km

Karsten Heeger, Yale University

Yale, September 30, 2013

Distance to Reactor (m)

Reactor Antineutrinos at KamLAND Reactor V_e

Kan LANL

KamLAND 2007-2010

Neutrino Oscillation Measurements

Recent Observations

- atmospheric v_{μ} and \overline{v}_{μ} disappear most likely to v_{τ} (SK, MINOS)
- accelerator v_{μ} and \overline{v}_{μ} disappear at L~250, 700 km (K2K, T2K, MINOS)
- some accelerator v_{μ} appear as v_{μ} at L~250, 700 km (T2K, MINOS)
- solar v_e convert to v_{μ}/v_{τ} (CI, Ga, SK, SNO, Borexino)
- reactor \overline{v}_e disappear at L~200 km (KamLAND)
- reactor ∇_e disappear at L~1 km (DC, Daya Bay RENO)

Experiments have demonstrated vacuum oscillation L/E pattern

$$P_{i \to i} = \sin^2 2\theta \sin^2 \left(1.27 \Delta m^2 \frac{L}{E} \right)$$

Neutrino Oscillation

Neutrino Oscillation Imply Neutrino Mass

mass eigenstates ≠ flavor eigenstates

$$|\nu_{\alpha}\rangle = \sum_{i} U_{\alpha i}^{*} |\nu_{i}\rangle$$

flavor composition of neutrinos changes as they propagate

$$P(\nu_{\alpha} \to \nu_{\beta}) = |\langle \nu_{\beta} | \nu_{\alpha}(L) \rangle|^{2}$$

$$= \delta_{\alpha\beta} - 4 \sum_{i>j} \Re(U_{\alpha i}^{*} U_{\beta i} U_{\alpha j} U_{\beta j}^{*}) \sin^{2}[1.27\Delta m_{ij}^{2} L/E]$$

$$+ 2 \sum_{i>j} \Im(U_{\alpha i}^{*} U_{\beta i} U_{\alpha j} U_{\beta j}^{*}) \sin^{2}[2.54\Delta m_{ij}^{2} L/E]$$

2-neutrino case

$$\boldsymbol{P}_{i \to j} = \frac{\sin^2 2\theta}{\sin^2 \left(1.27\Delta m^2 \frac{L}{E}\right)}$$

energy and baseline dependent osc frequency depends on Δm^2 amplitude depends on θ

Karsten Heeger, Yale University

ncreasing neutrino mass

Val

V2

v

 Δm_{atr}^2

 Δm_{sol}^2

 v_{τ}

Measurement of Fundamental Parameters

Reactor Neutrino Oscillation Experiments

Measure (non)-1/r² behavior of \overline{v}_e interaction rate

1.1

```
L/E \rightarrow \Delta m^2 amplitude of oscillation \rightarrow \theta
```

 Δm^{2}_{atm}

for 3 active v, two different oscillation length scales: $\Delta m_{12}^2 \Delta m_{23}^2$

Karsten Heeger, Yale University

Measuring θ_{13} with Reactor Experiments

Daya Bay Nuclear Power Plant

A Powerful Neutrino Source

- Among the top 5 most powerful reactor complexes in the world, producing 17.4 GW_{th} (6 x 2.95 GW_{th})
- All 6 reactors are in commercial operation
- Adjacent to mountains; convenient to construct tunnels and underground labs with sufficient overburden to suppress cosmic rays

Reactors produce ~2×10²⁰ antineutrinos/sec/GW

An International Effort

Asia (21)

Beijing Normal Univ., CGNPG, CIAE, Dongguan Polytechnic, ECUST, IHEP, Nanjing Univ., Nankai Univ., NCEPU, Shandong Univ., Shanghai Jiao Tong Univ., Shenzhen Univ., Tsinghua Univ., USTC, Xian Jiaotong Univ., Zhongshan Univ., Chinese Univ. of Hong Kong, Univ. of Hong Kong, National Chiao Tung Univ., National Taiwan Univ., National United Univ.

Europe (2)

Charles University, JINR Dubna

230 Collaborators from 40 Institutions

North America (17)

Brookhaven Natl Lab, CalTech, Illinois Institute of Technology, Iowa State, Lawrence Berkeley Natl Lab, Princeton, Rensselaer Polytechnic, Siena College, UC Berkeley, UCLA, Univ. of Cincinnati, Univ. of Houston, UIUC, Univ. of Wisconsin, Virginia Tech, William & Mary, Yale

Karsten Heeger, Yale University

Daya Bay Experiment Layout

D1

Hall 3: began 3 AD operation on Dec. 24, 2011

Hall 2: began 1 AD operation on Nov. 5, 2011

Hall 1: began 2 AD operation on Sep. 23, 2011

Daya Bay Detectors

Antineutrino Detector Assembly

Karsten Heeger, Yale University

Yale, September 30, 2013

Liquid Scintillator Hall

18

2216

PR.

.....

Detector Filling and Target Mass Measurement

Quantity	Relative	Absolute	
protons/kg	neg.	0.47%	
Density (kg/L)	neg.	neg.	
Total mass	0.015%	0.015%	
Overflow tank geometry	0.0066%	0.0066%	
Overflow sensor calibration	0.0043%	0.0043%	
Bellows Capacity	0.0025%	0.0025%	
Target mass	0.017%	0.017%	
Target protons	0.017%	0.47%	

Target mass determination error ± 3kg out of 20,000

<0.03% during data taking period

LS Gd-LS MO

Detectors are filled from same reservoirs *"in-pairs"* within < 2 weeks.

Karsten Heeger, Yale University

Antineutrino Detector Installation - Near Hall

Automated Calibration System

Daya Bay

3 Automatic calibration 'robots' (ACUs) on each detector

Three axes: center, edge of target, middle of gamma catcher

Top view

3 sources in each robot, including:

- 10 Hz ⁶⁸Ge (0 KE e⁺ = 2×0.511 MeV γ's)
- 0.75 Hz $^{241}Am^{-13}C$ neutron source (3.5 MeV n without γ)
 - + 100 Hz ^{60}Co gamma source (1.173+1.332 MeV $\gamma)$
- LED diffuser ball (500 Hz) for time calibration

Temporary special calibration sources:

γ: ¹³⁷Cs (0.662 MeV), ⁵⁴Mn (0.835 MeV), ⁴⁰K (1.461 MeV) n: ²⁴¹Am-⁹Be, ²³⁹Pu-¹³C

Prompt + Delayed Selection

Antineutrino Candidates Selection

Antineutrino interactions cleanly separated from backgrounds

- (1) Reject spontaneous PMT light emission ("flashers")
- (2) Prompt positron: 0.7 MeV < Ep < 12 MeV
- (3) Delayed neutron: 6.0 MeV < Ed < 12 MeV
- (4) Neutron capture time:
 - 1 μs < t < 200 μs
- (5) Muon veto:
 - Water pool muon (>12 hit PMTs): Reject [-2µs; 600µs]
 - AD muon (>3000 photoelectrons): Reject [-2 μs; 1400μs]
 - AD shower muon (>3×10⁵ p.e.): Reject [-2 μs; 0.4s]
- (6) Multiplicity:
 - No additional prompt-like signal 400µs before delayed neutron
 - No additional delayed-like signal 200µs after delayed neutron

Analyzed Data Sets

Two detector comparison

[1202.6181]

- 90 days of data, Daya Bay near only
- NIM A 685 (2012), 78-97

First oscillation analysis [1203:1669]

- 55 days of data, 6 ADs near+far
- PRL 108 (2012), 171803

Improved oscillation analysis [1210.6327]

- 139 days of data, 6 ADs near+far
- CP C **37** (2013), 011001

Spectral Analysis

- 217 days complete 6 AD period
- 55% more statistics than CPC result

Side-by-Side Comparison in Near Hall

Karsten Heeger, Yale University

Daya Bay Initial Results

March 2012

June 2012

Based on 55 days of data with 6 ADs, discovered disappearance of reactor \overline{v}_{e} at short baseline. [PRL **108**, 171803]

Obtained the most precise value of θ_{13} :

 $\sin^2 2\theta_{13} = 0.089 \pm 0.010 \pm 0.005$ [CPC **37**, 011001]

BREAKTHROUGH OF THE YEAR 2012 | NEWSFOCUS

TALENs, and another genome-editing tool called meganucleases is that they must be reengineered for each new DNA target. These proteins have two parts: the DNA targeting section and the DNA-cutting section. The new technology substitutes RNA—which is simpler to make than a piece of a protein for the DNA targeting section. It also makes use of a bacterial protein called Cas9, which is part of a natural bacterial defense system called CRISPR, to do the cutting.

Researchers have shown in a test-tube that they can combine these two RNAs into a single one that both matches the DNA target and holds Cas9 in place. Using this system, they were able to cut specific target DNA, demonstrating the potential of Cas9 to work like TALENs. Now, those researchers are trying this approach in organisms other than bacteria, and other genome engineers are quite excited about their prospects, suggesting that it may one day challenge zinc finger nucleases and TALENs as the core genome engineering technology.

CRASH PROJECT OPENS A DOOR IN NEUTRINO PHYSICS

Sometimes it's not the result itself so much as the promise it holds that matters most. This year, physicists measured the last parameter describing how elusive particles called neutrinos morph into one another as they zip along at near-light speed. And the result suggests that in the coming decades neutrino physics will be every

UNNER-UP the niverse evolved to contain so much matter

Born in certain nuclear interactions, neutrinos come in three types or flavors that change into one another in so-called neutrino oscillations. The rates and extents to which the flavors mix depend on six parameters: the three differences between the neutrinos' masses, and three "mixing angles." In March, the 250 researchers with the Daya Bay Reactor Neutrino Experiment in China reported that last unknown parameter, the mixing angle known as θ_{13} (pronounced "theta one three"), equals 8.8°, give or take 0.8°.

The result itself is remarkable, as it's not every year that physicists measure a new fundamental parameter. The real excitement, however, stems from the result's broader implications. The measurement proves that all three mixing angles are greater than zero. That fact, in turn, implies that the oscillations of antineutrinos might differ from those of neutrinos, something that would not be possible had θ_{13} equaled zero.

That's a big deal. Such a difference would

analogous to the effect that created the matterantimatter imbalance in the universe.

In fact, researchers in the United States, Japan, and Europe are engaged in experiments in which they use particle accelerators to fire neutrinos hundreds of kilometers through Earth to huge particle detectors. Current efforts seek to pin down, for example, the neutrinos emanating from the reactors at the Daya Bay Nuclear Power Plant and two neighboring plants in Shenzhen. In making a definitive measurement, they beat out teams working at reactors in France and South Korea and accelerator-based experiments in

Japan and the United States. The measurement of θ_{13} wasn't the only result in particle physics this year. Researchers working with the world's largest atom smasher, the Large Hadron Collider (LHC) in Switzerland, discovered the Higgs boson, the

That was fast! Construction of China's Daya Bay Reactor Neutrino Experiment began in 2007. With 2 months' worth of data, it scooped competitors in Japan, France, Korea, and the United States.

Science **338**, 1527

Rate-only Analysis:

Previously reported

$$\frac{N_{far}}{N_{near}} = \frac{N_{protons,far}}{N_{protons,near}} \frac{L_{near}^2}{L_{far}^2} \frac{\epsilon_{far}}{\epsilon_{near}} \frac{\int_{E_{min}}^{E_{max}} dE P_{surv}(E, L_{far}; \theta_{13}, \Delta m_{ee}^2) \sigma(E) \Phi(E)}{\int_{E_{min}}^{E_{max}} dE P_{surv}(E, L_{near}; \theta_{13}, \Delta m_{ee}^2) \sigma(E) \Phi(E)}$$

Advantages: Fewer systematic uncertainties Disadvantages: Less sensitive, Unable to constrain Δm_{ee}^2

Rate + Spectrum Analysis:

Latest result

$$\frac{\frac{dN_{far}}{dE}}{\frac{dN_{near}}{dE}} = \frac{N_{protons,far}}{N_{protons,near}} \frac{L_{near}^2}{L_{far}^2} \frac{\epsilon_{far}}{\epsilon_{near}} \frac{P_{surv}(E, L_{far}; \theta_{13}, \Delta m_{ee}^2) \sigma(E) \Phi(E)}{P_{surv}(E, L_{near}; \theta_{13}, \Delta m_{ee}^2) \sigma(E) \Phi(E)}$$

Advantages: Each energy bin is an independent oscillation measurement, Δm_{ee}^2 Disadvantages: Requires detailed understanding of detector energy response.

Calibration Performance

Spallation *n*Gd capture peak vs.

Stable and Consistent Energy Response

After calibration, achieve energy response that is **stable to ~0.1%** in all detectors, with a **total relative uncertainty of 0.35%** between detectors.

Relative energy peaks in all detectors (after calibration)

Karsten Heeger, Yale University

Calibration: Detector Uniformity

Measure uniformity with sources placed along three axes and spallation nGd events

Daya Bay

Energy Response Model

Model maps true energy E_{true} to reconstructed kinetic energy E_{rec}

- Minimal impact on oscillation measurement
- Crucial for measurement of reactor spectra

IBD in acrylic

(~1.3%)

IBD in target

10³

10²

10

Detector Response: Acrylic Vessels

Simulation

Energy loss in acrylic causes small distortion of energy spectrum

12

If antineutrino interacts in or near acrylic vessel, a portion of the kinetic energy of inverse beta positrons will not be detected

Annihilation gammas with longer range can also deposit energy in the vessels

Generated 2D distortion matrix from MC to correct predicted positron energy spectrum

Uncertainties from varying acrylic vessel thicknesses and MC statistics incorporated into analysis.

Yale, September 30, 2013

10 Eprompt [MeV]

Electron response

- 1) 3-parameter purely empirical model:
- 2) Semi-emp. model based on Birks' law:

Gammas + positrons

 Gammas connected to electron model through MC:

$$E_{\rm vis}^{\gamma} = \int E_{\rm vis}^{e^-} \left(E_{\rm true}^{e^-} \right) \cdot \frac{dN}{dE} \left(E_{\rm true}^{e^-} \right) dE_{\rm true}^{e^-}$$

 Positrons connected to electron model through MC:

$$E_{
m vis}^{e^+} = E_{
m vis}^{e^-} + 2 \cdot E_{
m vis}^{\gamma}(0.511\,{
m MeV})$$

$$\frac{E_{\text{vis}}}{E_{\text{true}}} = \frac{1 + p_3 \cdot E_{true}}{1 + p_1 \cdot e^{-p_2 \cdot E_{\text{true}}}}$$

$$\frac{E_{\text{vis}}}{E_{\text{true}}} = f_{q}(E_{\text{true}}; k_{B}) + k_{C} \cdot f_{c}(E_{\text{true}})$$

$$k_{B}: \text{ Birks' constant}$$

 k_C : Cherenkov contribution

PMT readout electronics introduces additional biases

Electronics does not fully capture late secondary hits

- Slow scintillation component missed at high energies
- Charge collection efficiency decreases with visible light

1

PMT readout electronics introduces additional biases

- Effective model as a function of total visible energy ۲
- 2 empirical parameterizations: exponential and quadratic ۲
- Total effective non-linearity f from both scintillation and electronics ٠ effects:

$$f = \frac{E_{\text{rec}}}{E_{\text{true}}} = \frac{E_{\text{rec}}}{E_{\text{vis}}} \cdot \frac{E_{\text{vis}}}{E_{\text{true}}}$$
1 Electronics non-linearity \longrightarrow
2 Scintillator non-linearity \longrightarrow

Energy Resolution Model

Functional form:

$$\frac{\sigma_E}{E} = \sqrt{a^2 + \frac{b^2}{E} + \frac{c^2}{E^2}}$$

Contributions from:

- a : Spacial/temp. resolution (∝E)
- b : Photon statistics ($\propto \sqrt{E}$)
- c : Dark noise (const:)

Calibrated primarily using monoenergetic gamma sources

- Radioactive calibration sources placed at the detector center
- Additional data from IBD and spallation neutrons, uniformly distributed in LS
- Alpha source data used to cross-check result
 - Larger uncertainties due to different response from electronics

Constraining the Non-Linearity Parameters

Full detector calibration data

- 1. Monoenergetic gamma lines from various sources
 - Radioactive calibration sources, employed regularly: ⁶⁸Ge, ⁶⁰Co, ²⁴¹Am-¹³C and during special calibration periods: ¹³⁷Cs, ⁵⁴Mn, ⁴⁰K, ²⁴¹Am-⁹Be, Pu-¹³C
 - Singles and correlated spectra in regular physics runs (⁴⁰K, ²⁰⁸Tl, n capture on H)
- 2. Continuous spectrum from ¹²B produced by muon spallation inside the scintillator

Standalone measurements

- Scintillator quenching measurements using neutron beams and Compton e-
- Calibration of readout electronics with flash ADC

Energy Response Model

Constraints

Use calibration gamma sources and continuous ¹²B spectrum to constrain energy model parameters

Positron Energy Response

multiple models are constructed with different data and parameter constraints

conservatively combine 5 minimal correlated energy models

Two uncorrelated signals can accidentally mimic an antineutrino signal.

Accidental background be accurately modeled using uncorrelated signals in data.

→ Negligible uncertainty in background rate or spectra.

β-n decay:

- Prompt: β-decay
- Delayed: neutron capture

⁹Li: $\tau_{\frac{1}{2}} = 178$ ms, Q = 13. 6 MeV ⁸He: $\tau_{\frac{1}{2}} = 119$ ms, Q = 10.6 MeV

- Generated by cosmic rays
- Long-lived
- Mimic antineutrino signal

This background is directly measured by fitting the distribution of IBD candidates vs. time since last muon.

Analysis muon veto cuts control B/S to ~0.3±0.1%.

Background: β-n decay (Shape)

Background: Fast neutrons

Mimics antineutrino (IBD) signal:

- Prompt: Neutron collides/stops in target
- Delayed: Neutron captures on Gd

	Near Halls			Far Hall		
	AD 1	AD 2	AD 3	AD 4	AD 5	AD 6
IBD candidates	101290	102519	92912	13964	13894	13731
DAQ live time (days)	191.001		189.645		189.779	
Efficiency $\epsilon_{\mu} \cdot \epsilon_{m}$	0.7957	0.7927	0.8282	0.9577	0.9568	0.9566
Accidentals (per day)*	9.54±0.03	9.36±0.03	7.44±0.02	2.96 ± 0.01	2.92 ± 0.01	2.87±0.01
Fast-neutron (per day)*	0.92	±0.46	0.62 ± 0.31		0.04±0.02	
⁹ Li/ ⁸ He (per day)*	2.40:	±0.86	1.2 ± 0.63		0.22 ± 0.06	
Am-C corr. (per day)*	(0.26±	0.12		
¹³ C ¹⁶ O backgr. (per day)*	0.08 ± 0.04	0.07±0.04	0.05 ± 0.03	0.04 ± 0.02	0.04 ± 0.02	0.04±0.02
IBD rate (per day)*	653.30±2.31	664.15±2.33	581.97±2.07	73.31±0.66	73.03±0.66	72.20± 0.66

Background and IBD rates were corrected for the efficiency of the muon veto and multiplicity cuts $\epsilon_{\mu} \cdot \epsilon_{m}$

Collected more than 300k antineutrino interactions

- Consistent rates for side-by-side detectors
- Uncertainties still dominated by statistics

Antineutrino Rate vs Time

Ling Ao-II NPP

Ling Ao NPP

AD1 AD2

Daya Bay NPP

EH1

L1

L2

AD3

Detected rate strongly correlated with reactor flux expectations

- Predicted rate assumes no oscillation
- Absolute normalization determined by fit to data
- Normalization within a few percent of expectations

Prompt IBD Spectra

Towards a Precision Reactor Spectrum

Karsten Heeger, Yale University

Rate+Spectra Oscillation Analysis

Strong confirmation of oscillation-interpretation of observed $\overline{v_e}$ deficit

	Normal MH Δm_{32}^2 [10 ⁻³ eV ²]	Inverted MH Δm^2_{32} [10 ⁻³ eV ²]		
From Daya Bay Δm^2_{ee}	$2.54^{+0.19}_{-0.20}$	$-2.64\substack{+0.19\\-0.20}$		
From MINOS $\Delta m^2_{\mu\mu}$	$2.37^{+0.09}_{-0.09}$	-2.41 ^{+0.11} -0.09 A. Radovid DPF2013		

Pure Spectral Analysis

 $\sin^2 2 heta_{13} = 0.108 \pm 0.028$ $|\Delta m^2_{ee}| = 2.55^{+0.21}_{-0.18} \cdot 10^{-3} \text{eV}^2$ $\chi^2/N_{\text{DoF}} = 161.2/148$

 $\theta_{13} = 0$ can be excluded at > 3σ from spectral information alone

For each AD, total event prediction fixed to observed data:

1
$$\theta_{13}$$
 free-floating: $\chi^2/N_{\text{DoF}} = 161.2/148$ 2 $\theta_{13} = 0$: $\chi^2/N_{\text{DoF}} = 178.5/146$

 $\Rightarrow \Delta \chi^2/N_{\rm DoF} = 17.3/2$, corresponding to $p = 1.75 \cdot 10^{-4}$

Short-baseline reactor experiments insensitive to neutrino mass hierarchy. Cannot discriminate two frequencies contributing to oscillation: Δm_{31}^2 , Δm_{32}^2

One effective oscillation frequency is measured:

$$P_{\bar{\nu_e} \to \bar{\nu_e}} = 1 - \sin^2 2\theta_{13} \sin^2 \left(\Delta m_{ee}^2 \frac{L}{4E} \right) - \sin^2 2\theta_{12} \cos^4 2\theta_{13} \sin^2 \left(\Delta m_{21}^2 \frac{L}{4E} \right)$$
$$\implies \sin^2 (\Delta m_{ee}^2 \frac{L}{4E}) \equiv \cos^2 \theta_{12} \sin^2 (\Delta m_{31}^2 \frac{L}{4E}) + \sin^2 \theta_{12} \sin^2 (\Delta m_{32}^2 \frac{L}{4E})$$

Result can be easily related to actual mass splitting, based on true hierarchy:

$$|\Delta m_{ee}^2| \simeq |\Delta m_{32}^2| \pm 5.21 \times 10^{-5} \text{eV}^2$$
 +: Normal Hierarchy
-: Inverted Hierarchy

Hierarchy discrimination requires ~2% precision on both Δm^2_{ee} and $\Delta m^2_{\mu\mu}$

L/E Oscillation

Energy and Baseline Dependence of Oscillation Effect

Karsten Heeger, Yale University

L/E Oscillation

Energy and Baseline Dependence of Oscillation Effect

Global Comparison of θ₁₃ **Measurements**

Daya Bay Fall 2012

Full Volume Calibration Installation of Final Antineutrino Detectors MA LL x (m

Daya Bay Future

Improved precision on oscillation parameters

- Statistics contribute 73% (65%) to total uncertainty in $\sin^2 2\theta_{13}$ ($|\Delta m_{ee}^2|$)
- Major systematics:
 - θ_{13} : Relative + absolute energy, and relative efficiencies
 - |Δm²_{ee}| : Relative energy model, relative efficiencies, and backgrounds
- Precision of mass splitting measurement closing in on results from μ flavor sector

Measure absolute reactor neutrino flux and spectrum Cosmogenic Backgrounds Supernova Neutrinos

Neutrino Anomalies

Anomalies in 3-v interpretation of global oscillation data

LSND (\overline{v}_e appearance) MiniBoone (v_e appearance) Ga anomaly Reactor anomaly (\overline{v}_e disappearance)

Cosmology suggests higher radiation density

 $N_{\text{eff}} > 3$

new oscillation signal requires $\Delta m^2 \sim O(1eV^2)$ and $sin^2 2\theta > 10^{-3}$ systematics or experimental effect? \rightarrow need to test effects

Reactor Fluxes and "Anomaly"

Karsten Heeger, Yale University

Summary

For > 60 years reactor experiments have played an important role in neutrino physics, in both discoveries and precision measurements.

Reactors are flavor pure sources of $\overline{\nu}_{e.}$

Current reactor experiments (L~1-2km) provide precision data on θ_{13} , and reactor antineutrino spectra.

The Daya Bay Experiment has reported the first direct measurement of the short-distance electron antineutrino oscillation frequency:

$$\left|\Delta m^2_{ee}\right| = 2.59^{+0.19}_{-0.20} \times 10^{-3} \mathrm{eV^2}$$

The measurement has also produced the most precise estimate of the mixing angle: $\sin^2(2\theta_{13}) = 0.090^{+0.008}_{-0.009}$

There is more to come... stay tuned!

End